x2p2+xp−(y2+y)=0⇒p=2x2−x±x2−4x2(−(y2+y))=2x2−x±x2−4x2(−y2−y)
=2x2−x±x2+4x2(y2+y)=2x2−x±x2(1+4(y2+y))
=2x2−x±x(1+4(y2+y))=2x2−x±x4y2+4y+1
=2x−1±4y2+4y+1, using quadratic formula.
⇒p=∂x∂z=2x−1±4y2+4y+1=2x−1±4y2+4y+1=2x−1±(2y+1)2
⇒∂x∂z=2x−1±(2y+1)=⎩⎨⎧xyx−1−yif ∂x∂z=2x−1+(2y+1)if ∂x∂z=2x−1−(2y+1)
⇒z=⎩⎨⎧∫xy dx=y∫x1 dx=ylnx+f(y)∫x−(1+y) dx=−(1+y)∫x1 dx=−(1+y)lnx+f(y)
where f(y) is an arbitrary function of y.
Thus, z=ylnx+f(y) or z=−(1+y)lnx+f(y)
Comments