Question #294882

Solve the equation of x²p²+xp-(y²+y)=0

1
Expert's answer
2022-02-08T14:47:57-0500

x2p2+xp(y2+y)=0p=x±x24x2((y2+y))2x2=x±x24x2(y2y)2x2\displaystyle x²p²+xp-(y²+y)=0\\\Rightarrow p=\frac{-x\pm\sqrt{x^2-4x^2(-(y^2+y))}}{2x^2}=\frac{-x\pm\sqrt{x^2-4x^2(-y^2-y)}}{2x^2}

=x±x2+4x2(y2+y)2x2=x±x2(1+4(y2+y))2x2\displaystyle =\frac{-x\pm\sqrt{x^2+4x^2(y^2+y)}}{2x^2}=\frac{-x\pm\sqrt{x^2(1+4(y^2+y))}}{2x^2}

=x±x(1+4(y2+y))2x2=x±x4y2+4y+12x2\displaystyle =\frac{-x\pm x\sqrt{(1+4(y^2+y))}}{2x^2}=\frac{-x\pm x\sqrt{4y^2+4y+1}}{2x^2}

=1±4y2+4y+12x\displaystyle =\frac{-1\pm \sqrt{4y^2+4y+1}}{2x}, using quadratic formula.


p=zx=1±4y2+4y+12x=1±4y2+4y+12x=1±(2y+1)22x\displaystyle \Rightarrow p=\frac{\partial z}{\partial x}=\frac{-1\pm \sqrt{4y^2+4y+1}}{2x}=\frac{-1\pm \sqrt{4y^2+4y+1}}{2x}=\frac{-1\pm\sqrt{(2y+1)^2}}{2x}


zx=1±(2y+1)2x={yxif zx=1+(2y+1)2x1yxif zx=1(2y+1)2x\displaystyle \Rightarrow \frac{\partial z}{\partial x}=\frac{-1\pm(2y+1)}{2x}= \begin{cases} \frac{y}{x}& \text{if }\frac{\partial z}{\partial x}=\frac{-1+(2y+1)}{2x}\\ \quad\\ \frac{-1-y}{x}& \text{if }\frac{\partial z}{\partial x}=\frac{-1-(2y+1)}{2x} \end{cases}

z={yx dx=y1x dx=ylnx+f(y)(1+y)x dx=(1+y)1x dx=(1+y)lnx+f(y)\displaystyle \Rightarrow z= \begin{cases} \int\frac{y}{x}\ dx=y\int\frac{1}{x}\ dx=y\ln x+f(y)\\ \quad\\ \int\frac{-(1+y)}{x}\ dx=-(1+y)\int\frac{1}{x}\ dx=-(1+y)\ln x+ f(y) \end{cases}

where f(y)f(y) is an arbitrary function of yy.


Thus, z=ylnx+f(y) or z=(1+y)lnx+f(y)\displaystyle z=y\ln x+f(y) \text{ or }z=-(1+y)\ln x+f(y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS