Find a power series solution pf xy'=y
CORRECTED SOLUTION.
Let y=∑n=0+∞cnxny=\sum\limits_{n=0}^{+\infty}c_nx^ny=n=0∑+∞cnxn. Then xy′=x∑n=0+∞ncnxn−1=∑n=0+∞ncnxnxy'=x\sum\limits_{n=0}^{+\infty}nc_nx^{n-1}=\sum\limits_{n=0}^{+\infty}nc_nx^nxy′=xn=0∑+∞ncnxn−1=n=0∑+∞ncnxn.
Since xy′=yxy'=yxy′=y, it must be ncn=cnnc_n=c_nncn=cn for all n=0,1,2,…n=0,1,2,\dotsn=0,1,2,…
This means cn=0c_n=0cn=0 for all n≠1n\ne 1n=1 and c1c_1c1 can be arbitrary.
Answer. y=c1xy=c_1xy=c1x.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment