Question #294670

verify the function u(x,y)=e^xsiny is one of the solution of uxx+uyy=0



1
Expert's answer
2022-02-07T17:25:40-0500

u=u(x,y)=exsiny\displaystyle u=u(x,y)=e^x\sin y\\

Now,

ux=ux=exsiny, 2ux2=uxx=exsinyuy=uy=excosy, 2uy2=uyy=exsiny\displaystyle \frac{\partial u}{\partial x}=u_x=e^x\sin y,\ \frac{\partial^2u}{\partial x^2}=u_{xx}=e^x\sin y\\ \frac{\partial u}{\partial y}=u_y=e^x\cos y,\ \frac{\partial^2u}{\partial y^2}=u_{yy}=-e^x\sin y

uxx+uyy=exsiny+(exsiny)=exsinyexsiny=0\displaystyle u_{xx}+u_{yy}=e^x\sin y+(-e^x\sin y)=e^x\sin y-e^x\sin y=0

Thus, u=u(x,y)=exsiny\displaystyle u=u(x,y)=e^x\sin y\\ is a solution of the PDE uxx+uyy=0u_{xx}+u_{yy}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS