verify the function u(x,y)=e^xsiny is one of the solution of uxx+uyy=0
"\\displaystyle\nu=u(x,y)=e^x\\sin y\\\\"
Now,
"\\displaystyle\n\\frac{\\partial u}{\\partial x}=u_x=e^x\\sin y,\\ \\frac{\\partial^2u}{\\partial x^2}=u_{xx}=e^x\\sin y\\\\\n\\frac{\\partial u}{\\partial y}=u_y=e^x\\cos y,\\ \\frac{\\partial^2u}{\\partial y^2}=u_{yy}=-e^x\\sin y"
"\\displaystyle\nu_{xx}+u_{yy}=e^x\\sin y+(-e^x\\sin y)=e^x\\sin y-e^x\\sin y=0"
Thus, "\\displaystyle\nu=u(x,y)=e^x\\sin y\\\\" is a solution of the PDE "u_{xx}+u_{yy}=0"
Comments
Leave a comment