verify the function u(x,y)=e^xsiny is one of the solution of uxx+uyy=0
u=u(x,y)=exsiny\displaystyle u=u(x,y)=e^x\sin y\\u=u(x,y)=exsiny
Now,
∂u∂x=ux=exsiny, ∂2u∂x2=uxx=exsiny∂u∂y=uy=excosy, ∂2u∂y2=uyy=−exsiny\displaystyle \frac{\partial u}{\partial x}=u_x=e^x\sin y,\ \frac{\partial^2u}{\partial x^2}=u_{xx}=e^x\sin y\\ \frac{\partial u}{\partial y}=u_y=e^x\cos y,\ \frac{\partial^2u}{\partial y^2}=u_{yy}=-e^x\sin y∂x∂u=ux=exsiny, ∂x2∂2u=uxx=exsiny∂y∂u=uy=excosy, ∂y2∂2u=uyy=−exsiny
uxx+uyy=exsiny+(−exsiny)=exsiny−exsiny=0\displaystyle u_{xx}+u_{yy}=e^x\sin y+(-e^x\sin y)=e^x\sin y-e^x\sin y=0uxx+uyy=exsiny+(−exsiny)=exsiny−exsiny=0
Thus, u=u(x,y)=exsiny\displaystyle u=u(x,y)=e^x\sin y\\u=u(x,y)=exsiny is a solution of the PDE uxx+uyy=0u_{xx}+u_{yy}=0uxx+uyy=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments