y " − 3 y ′ − 10 y = 0 , y ( 0 ) = 1 , y ′ ( 0 ) = 2 y"-3y'-10y=0, y(0)=1, y'(0)=2 y " − 3 y ′ − 10 y = 0 , y ( 0 ) = 1 , y ′ ( 0 ) = 2
Auxiliary equation is
k 2 − 3 k − 10 = 0 k^2-3k-10=0 k 2 − 3 k − 10 = 0
k = 3 ± 9 + 40 2 k=\frac{3\pm \sqrt{9+40}}{2} k = 2 3 ± 9 + 40
k 1 = − 2 , k 2 = 5 k_1=-2,k_2=5 k 1 = − 2 , k 2 = 5
General solution is
y = c 1 e − 2 x + c 2 e 5 x . . . ( 1 ) y=c_1e^{-2x}+c_2e^{5x}...(1) y = c 1 e − 2 x + c 2 e 5 x ... ( 1 )
Since, y ( 0 ) = 1 y(0)=1 y ( 0 ) = 1
1 = c 1 + c 2 . . . ( 2 ) 1=c_1+c_2...(2) 1 = c 1 + c 2 ... ( 2 )
And
y ′ = − 2 c 1 e − 2 x + 5 c 2 e 5 x y'=-2c_1e^{-2x}+5c_2e^{5x} y ′ = − 2 c 1 e − 2 x + 5 c 2 e 5 x
Also y ′ ( 0 ) = 2 y'(0)=2 y ′ ( 0 ) = 2
2 = − 2 c 1 + 5 c 2 . . . ( 3 ) 2=-2c_1+5c_2...(3) 2 = − 2 c 1 + 5 c 2 ... ( 3 )
Multiply equation (2) with 2 and add with equation (3), we get
4 = 7 c 2 ⇒ c 2 = 4 7 4=7c_2\Rightarrow c_2=\frac{4}{7} 4 = 7 c 2 ⇒ c 2 = 7 4
From equation (2),
1 = c 1 + 4 7 ⇒ c 1 = 3 7 1=c_1+\frac 4 7\Rightarrow c_1=\frac 3 7 1 = c 1 + 7 4 ⇒ c 1 = 7 3
y = 3 7 e − 2 x + 4 7 e 5 x ⇒ 7 y = 3 e − 2 x + 4 e 5 x y=\frac 3 7e^{-2x}+\frac 4 7e^{5x}\Rightarrow 7y=3e^{-2x}+4e^{5x} y = 7 3 e − 2 x + 7 4 e 5 x ⇒ 7 y = 3 e − 2 x + 4 e 5 x
Comments