Question #294062

a)solve dy/dx - 3ye^3x =y. Given that y=1 when x=0



b)find the solution of sinx dy/dx + y cosx = sin^3 x cosx


1
Expert's answer
2022-02-07T13:59:55-0500

a)


y3ye3x=yy'-3ye^{3x}=y

y=y(1+3e3x)y'=y(1+3e^{3x})

dyy=(1+3e3x)dx\dfrac{dy}{y}=(1+3e^{3x})dx

Integrate


dyy=(1+3e3x)dx\int \dfrac{dy}{y}=\int (1+3e^{3x})dx

ln(y)=x+e3x+lnC\ln (|y|)=x+e^{3x}+\ln C

y=Cex+e3xy=Ce^{x+e^{3x}}

1(0)=11(0)=1


1=Ce0+e3(0)=>C=e11=Ce^{0+e^{3(0)}}=>C=e^{-1}

y=ex+e3x1y=e^{x+e^{3x}-1}

b)


d(ysinx)=sin3xcosxdxd(y\sin x)=\sin^3x\cos xdx

Integrate


d(ysinx)=sin3xcosxdx\int d(y\sin x)=\int \sin^3x\cos xdx

ysinx=sin4x4+Cy\sin x=\dfrac{\sin^4 x}{4}+C

y=sin3x4+Csinxy=\dfrac{\sin^3 x}{4}+\dfrac{C}{\sin x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS