Find the solution of
(D^4+2D^3-6D^2-16D-8)y=0
(D4+2D3−6D2−16D−8)y=0(D^4+2D^3-6D^2-16D-8)y=0(D4+2D3−6D2−16D−8)y=0
⇒D4+2D3−6D2−16D−8=0⇒(D+2)2(D2−2D−2)=0⇒D+2=0,D+2=0or D2−2D−2=0⇒D=−2,D=−2, D=1+3, D=1−3\Rightarrow D^4+2D^3-6D^2-16D-8=0 \\\Rightarrow \left(D+2\right)^2\left(D^2-2D-2\right)=0 \\ \Rightarrow D+2=0,D+2=0\quad \mathrm{or}\quad \:D^2-2D-2=0 \\\Rightarrow D=-2,D=-2,\:D=1+\sqrt{3},\:D=1-\sqrt{3}⇒D4+2D3−6D2−16D−8=0⇒(D+2)2(D2−2D−2)=0⇒D+2=0,D+2=0orD2−2D−2=0⇒D=−2,D=−2,D=1+3,D=1−3
Thus, solution will be:
y=c1e(1+3)x+c2e(1−3)x+c3e−2x+c4xe−2xy=c_1e^{\left(1+\sqrt{3}\right)x}+c_2e^{\left(1-\sqrt{3}\right)x}+c_3e^{-2x}+c_4xe^{-2x}y=c1e(1+3)x+c2e(1−3)x+c3e−2x+c4xe−2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment