Answer to Question #294036 in Differential Equations for Kej

Question #294036

Find the solution of


(D^4+2D^3-6D^2-16D-8)y=0

1
Expert's answer
2022-02-08T12:09:15-0500

Solution:

(D4+2D36D216D8)y=0(D^4+2D^3-6D^2-16D-8)y=0

D4+2D36D216D8=0(D+2)2(D22D2)=0D+2=0,D+2=0orD22D2=0D=2,D=2,D=1+3,D=13\Rightarrow D^4+2D^3-6D^2-16D-8=0 \\\Rightarrow \left(D+2\right)^2\left(D^2-2D-2\right)=0 \\ \Rightarrow D+2=0,D+2=0\quad \mathrm{or}\quad \:D^2-2D-2=0 \\\Rightarrow D=-2,D=-2,\:D=1+\sqrt{3},\:D=1-\sqrt{3}

Thus, solution will be:

y=c1e(1+3)x+c2e(13)x+c3e2x+c4xe2xy=c_1e^{\left(1+\sqrt{3}\right)x}+c_2e^{\left(1-\sqrt{3}\right)x}+c_3e^{-2x}+c_4xe^{-2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment