The given question is;
(D2−3DD′+2(D′)2)z=e2x+3y+sin(x−2y)
Now put D=m,and D′=1 then the auxiliary equation is;
m2−3m+2=0⇒(m−2)(m−1)=0⇒m=1,2
Hence, the complementary function is;
zc=f1(y+x)+f2(y+2x).
Next, for the particular integral (yp );
zp=D2−3DD′+2(D′)21(e2x+3y+sin(x−2y))=D2−3DD′+2(D′)21e2x+3y+D2−3DD′+2(D′)21sin(x−2y)=22−3(2)(3)+2(3)21e2x+3y+−(1)2−3[−1×(−2)]+2[−(−2)2]1sin(x−2y)=4−18+181e2x+3y+(−1−3[2]+2[−4]1sin(x−2y))=41e2x+3y+(−1−6−8)1sin(x−2y)=41e2x+3y+(−15)1sin(x−2y)=41e2x+3y−151sin(x−2y)
Thus the general solution is ; z=zc+zp=f1(y+x)+f2(y+2x)+41e2x+3y−151sin(x−2y)
Comments
Leave a comment