Answer to Question #293598 in Differential Equations for Saravana

Question #293598

(D² − 3DD + 2D²)z = e²x+³y +sin(x-2y)

1
Expert's answer
2022-02-04T12:10:34-0500

The given question is;

(D23DD+2(D)2)z=e2x+3y+sin(x2y)\displaystyle (D^2 − 3DD\prime + 2(D\prime)^2)z = e^{2x+3y}+\sin(x-2y)

Now put D=m,and D=1D=m,\text{and }D\prime=1 then the auxiliary equation is;

m23m+2=0(m2)(m1)=0m=1,2\displaystyle m^2-3m+2=0\Rightarrow(m-2)(m-1)=0\Rightarrow m=1,2

Hence, the complementary function is;

zc=f1(y+x)+f2(y+2x)\displaystyle z_c=f_1(y+x)+f_2(y+2x).


Next, for the particular integral (yp\displaystyle y_p );

zp=1D23DD+2(D)2(e2x+3y+sin(x2y))=1D23DD+2(D)2e2x+3y+1D23DD+2(D)2sin(x2y)=1223(2)(3)+2(3)2e2x+3y+1(1)23[1×(2)]+2[(2)2]sin(x2y)=1418+18e2x+3y+(113[2]+2[4]sin(x2y))=14e2x+3y+1(168)sin(x2y)=14e2x+3y+1(15)sin(x2y)=14e2x+3y115sin(x2y)\displaystyle z_p=\frac{1}{D^2 − 3DD\prime + 2(D\prime)^2}(e^{2x+3y}+\sin(x-2y))\\ \quad=\frac{1}{D^2 − 3DD\prime + 2(D\prime)^2}e^{2x+3y}+\frac{1}{D^2 − 3DD\prime + 2(D\prime)^2}\sin(x-2y)\\ \quad=\frac{1}{2^2-3(2)(3)+2(3)^2}e^{2x+3y}+\frac{1}{-(1)^2 − 3[-1\times(-2)] + 2[-(-2)^2]}\sin(x-2y)\\ \quad=\frac{1}{4-18+18}e^{2x+3y}+\left(\frac{1}{-1-3[2]+2[-4]}\sin(x-2y)\right)\\ \quad=\frac{1}{4}e^{2x+3y}+\frac{1}{(-1-6-8)}\sin(x-2y)\\ \quad=\frac{1}{4}e^{2x+3y}+\frac{1}{(-15)}\sin(x-2y)\\ \quad=\frac{1}{4}e^{2x+3y}-\frac{1}{15}\sin(x-2y)


Thus the general solution is ; z=zc+zp=f1(y+x)+f2(y+2x)+14e2x+3y115sin(x2y)\displaystyle z=z_c+z_p=f_1(y+x)+f_2(y+2x)+\frac{1}{4}e^{2x+3y}-\frac{1}{15}\sin(x-2y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment