1.
P(x,y)=y+xsinx,∂y∂P=1
Q(x,y)=x−2ey,∂x∂Q=1
∂y∂P=1=∂x∂QWrite the system of two differential equations that define the function u(x,y)
∂x∂u=y+xsinx
∂y∂u=x−2ey
u=∫(x−2ey)dy+φ(x)
u=xy−2ey+φ(x)
∂x∂u=y+φ′(x)=y+xsinx
φ′(x)=xsinx
φ(x)=∫xsinxdx
φ(x)=−xcosx+sinx+C
u=xy−2ey−xcosx+sinx+C
−xy+2ey+xcosx−sinx=C
2.
xdxdy+2y=x4
y′+x2y=x3 Integration factor
μ(x)=e∫(2/x)dx=x2
x2y′+2xy=x5
d(x2y)=x5dx Integrate
∫d(x2y)=∫x5dx
x2y=6x6+C
y=6x4+x2C
Comments