Question #293579

1.       Solve the exact differential equation (𝗑 − 2𝑒𝑦)𝑑𝑦 + (𝑦 + 𝗑 sin 𝗑)𝑑𝗑 = 0.

2.     Solve the differential equation 𝗑 𝑑𝑦 + 2𝑦 = 𝗑4.

1
Expert's answer
2022-02-04T10:08:38-0500

1.


P(x,y)=y+xsinx,Py=1P(x,y)=y+x\sin x, \dfrac{\partial P}{\partial y}=1

Q(x,y)=x2ey,Qx=1Q(x,y)=x-2e^y, \dfrac{\partial Q}{\partial x}=1

Py=1=Qx\dfrac{\partial P}{\partial y}=1=\dfrac{\partial Q}{\partial x}

Write the system of two differential equations that define the function u(x,y)u(x,y)


ux=y+xsinx\dfrac{\partial u}{\partial x}=y+x\sin x

uy=x2ey\dfrac{\partial u}{\partial y}=x-2e^y

u=(x2ey)dy+φ(x)u=\int(x-2e^y)dy+\varphi(x)

u=xy2ey+φ(x)u=xy-2e^y+\varphi(x)


ux=y+φ(x)=y+xsinx\dfrac{\partial u}{\partial x}=y+\varphi'(x)=y+x\sin x

φ(x)=xsinx\varphi'(x)=x\sin x


φ(x)=xsinxdx\varphi(x)=\int x\sin xdx

φ(x)=xcosx+sinx+C\varphi(x)=-x\cos x+\sin x+C


u=xy2eyxcosx+sinx+Cu=xy-2e^y-x\cos x+\sin x+C

xy+2ey+xcosxsinx=C-xy+2e^y+x\cos x-\sin x=C

2.


xdydx+2y=x4x\dfrac{dy}{dx}+2y=x^4

y+2xy=x3y'+\dfrac{2}{x}y=x^3

Integration factor


μ(x)=e(2/x)dx=x2\mu(x)=e^{\int(2/x)dx}=x^2

x2y+2xy=x5x^2y'+2xy=x^5

d(x2y)=x5dxd(x^2y)=x^5 dx

Integrate


d(x2y)=x5dx\int d(x^2y)=\int x^5 dx

x2y=x66+Cx^2y=\dfrac{x^6}{6}+C

y=x46+Cx2y=\dfrac{x^4}{6}+\dfrac{C}{x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS