Question #293045

1. Find the general solution of the differential equation dy/dx = y^2 /1 + x^2


1
Expert's answer
2022-02-02T15:16:25-0500

The given question is; dydx=y21+x2\displaystyle \frac{dy}{dx}=\frac{y^2}{1+x^2}

Now, by method of separation of variables we have;

1y2dydx=11+x2\displaystyle \frac{1}{y^2}\frac{dy}{dx}=\frac{1}{1+x^2}

integrating both sides with respect to x yields;

1y2dydx dx=11+x2 dxy2 dy=11+x2 dxBut11+x2 dx=tan1(x) is standard.y2+12+1=tan1(x)+c, where c is an arbitrary constant.y11=tan1(x)+c1y=tan1(x)+cy=1tan1(x)+c\displaystyle \int\displaystyle \frac{1}{y^2}\frac{dy}{dx}\ dx=\int\frac{1}{1+x^2}\ dx\\ \Rightarrow\int y^{-2}\ dy=\int\frac{1}{1+x^2}\ dx\\ \text{But}\int\frac{1}{1+x^2}\ dx=\tan^{-1}(x)\ \text{is standard.}\\ \Rightarrow \frac{y^{-2+1}}{-2+1}=\tan^{-1}(x)+c,\ \text{where c is an arbitrary constant.}\\ \Rightarrow\frac{y^{-1}}{-1}=\tan^{-1}(x)+c\\ \Rightarrow -\frac{1}{y}=\tan^{-1}(x)+c\\ \Rightarrow y=\frac{-1}{\tan^{-1}(x)+c\\}


Hence, the general solution of the given DE is;

y=1tan1(x)+c\displaystyle y=\frac{-1}{\tan^{-1}(x)+c\\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS