1. Find the general solution of the differential equation dy/dx = y^2 /1 + x^2
The given question is; "\\displaystyle\n\\frac{dy}{dx}=\\frac{y^2}{1+x^2}"
Now, by method of separation of variables we have;
"\\displaystyle\n\\frac{1}{y^2}\\frac{dy}{dx}=\\frac{1}{1+x^2}"
integrating both sides with respect to x yields;
"\\displaystyle\n\\int\\displaystyle\n\\frac{1}{y^2}\\frac{dy}{dx}\\ dx=\\int\\frac{1}{1+x^2}\\ dx\\\\\n\\Rightarrow\\int y^{-2}\\ dy=\\int\\frac{1}{1+x^2}\\ dx\\\\\n\\text{But}\\int\\frac{1}{1+x^2}\\ dx=\\tan^{-1}(x)\\ \\text{is standard.}\\\\\n\\Rightarrow \\frac{y^{-2+1}}{-2+1}=\\tan^{-1}(x)+c,\\ \\text{where c is an arbitrary constant.}\\\\\n\\Rightarrow\\frac{y^{-1}}{-1}=\\tan^{-1}(x)+c\\\\\n\\Rightarrow -\\frac{1}{y}=\\tan^{-1}(x)+c\\\\\n\\Rightarrow y=\\frac{-1}{\\tan^{-1}(x)+c\\\\}"
Hence, the general solution of the given DE is;
"\\displaystyle\ny=\\frac{-1}{\\tan^{-1}(x)+c\\\\}"
Comments
Leave a comment