Solve the first order linear inhomogeneous differential equation using the constant variation method
(2x+1)y,=4x+2y
Given a first order inhomogeneous linear differential equation of the form;
"\\displaystyle\ny\\prime+p(x)y=f(x)\\cdots\\cdots\\cdots\\color{red}(1)"
using constant variation method, the general solution is given by;
"\\displaystyle\ny(x)=v(x)e^{q(x)}+ce^{q(x)}",
where "\\displaystyle\nv\\prime(x)=e^{-q(x)}f(x)", "\\displaystyle\nq(x)=\\int[-p(x)]\\ dx", and "c" is and arbitrary constant.
Now, the given DE is of the form;
"\\displaystyle\ny\\prime-\\frac{2}{2x+1}y=\\frac{4x}{2x+1}"
By comparing the given DE with "\\color{red}(1)";
"\\displaystyle\nq(x)=\\int[-p(x)]\\ dx=\\int\\left[\\frac{2}{2x+1}\\right]\\ dx=\\ln(2x+1)"
"\\displaystyle\nv\\prime(x)=e^{-q(x)\\ dx}\\times f(x)=e^{-\\ln(2x+1)}\\times\\frac{4x}{2x+1}=\\frac{4x}{(2x+1)^2}"
"\\displaystyle\n\\Rightarrow\nv(x)=\\int\\frac{4x}{(2x+1)^2}\\ dx=\\int\\left(\\frac{2}{2x+1}-\\frac{2}{(2x+1)^2}\\right)\\ dx"
"\\displaystyle\n=\\ln(2x+1)+\\frac{1}{2x+1}"
Thus, the general solution is;
"\\displaystyle\ny(x)=v(x)e^{q(x)}+Ae^{q(x)}=\\left(\\ln(2x+1)+\\frac{1}{2x+1}\\right)e^{\\ln(2x+1)}+ce^{\\ln(2x+1)}"
"\\displaystyle\n=\\left(\\ln(2x+1)+\\frac{1}{2x+1}\\right)(2x+1)+c\\ln(2x+1)"
"\\displaystyle\n=(2x+1)\\ln(2x+1)+1+c(2x+1)"
"=(2x+1)[c+\\ln(2x+1)]+1"
Comments
Leave a comment