Given a first order inhomogeneous linear differential equation of the form;
y′+p(x)y=f(x)⋯⋯⋯(1)
using constant variation method, the general solution is given by;
y(x)=v(x)eq(x)+ceq(x),
where v′(x)=e−q(x)f(x), q(x)=∫[−p(x)] dx, and c is and arbitrary constant.
Now, the given DE is of the form;
y′−2x+12y=2x+14x
By comparing the given DE with (1);
q(x)=∫[−p(x)] dx=∫[2x+12] dx=ln(2x+1)
v′(x)=e−q(x) dx×f(x)=e−ln(2x+1)×2x+14x=(2x+1)24x
⇒v(x)=∫(2x+1)24x dx=∫(2x+12−(2x+1)22) dx
=ln(2x+1)+2x+11
Thus, the general solution is;
y(x)=v(x)eq(x)+Aeq(x)=(ln(2x+1)+2x+11)eln(2x+1)+celn(2x+1)
=(ln(2x+1)+2x+11)(2x+1)+cln(2x+1)
=(2x+1)ln(2x+1)+1+c(2x+1)
=(2x+1)[c+ln(2x+1)]+1
Comments
Leave a comment