Answer to Question #292774 in Differential Equations for luna

Question #292774

Solve the first order linear inhomogeneous differential equation using the constant variation method

(2x+1)y,=4x+2y


1
Expert's answer
2022-02-07T16:12:51-0500

Given a first order inhomogeneous linear differential equation of the form;

y+p(x)y=f(x)(1)\displaystyle y\prime+p(x)y=f(x)\cdots\cdots\cdots\color{red}(1)

using constant variation method, the general solution is given by;

y(x)=v(x)eq(x)+ceq(x)\displaystyle y(x)=v(x)e^{q(x)}+ce^{q(x)},

where v(x)=eq(x)f(x)\displaystyle v\prime(x)=e^{-q(x)}f(x), q(x)=[p(x)] dx\displaystyle q(x)=\int[-p(x)]\ dx, and cc is and arbitrary constant.


Now, the given DE is of the form;

y22x+1y=4x2x+1\displaystyle y\prime-\frac{2}{2x+1}y=\frac{4x}{2x+1}

By comparing the given DE with (1)\color{red}(1);

q(x)=[p(x)] dx=[22x+1] dx=ln(2x+1)\displaystyle q(x)=\int[-p(x)]\ dx=\int\left[\frac{2}{2x+1}\right]\ dx=\ln(2x+1)

v(x)=eq(x) dx×f(x)=eln(2x+1)×4x2x+1=4x(2x+1)2\displaystyle v\prime(x)=e^{-q(x)\ dx}\times f(x)=e^{-\ln(2x+1)}\times\frac{4x}{2x+1}=\frac{4x}{(2x+1)^2}

v(x)=4x(2x+1)2 dx=(22x+12(2x+1)2) dx\displaystyle \Rightarrow v(x)=\int\frac{4x}{(2x+1)^2}\ dx=\int\left(\frac{2}{2x+1}-\frac{2}{(2x+1)^2}\right)\ dx

=ln(2x+1)+12x+1\displaystyle =\ln(2x+1)+\frac{1}{2x+1}


Thus, the general solution is;

y(x)=v(x)eq(x)+Aeq(x)=(ln(2x+1)+12x+1)eln(2x+1)+celn(2x+1)\displaystyle y(x)=v(x)e^{q(x)}+Ae^{q(x)}=\left(\ln(2x+1)+\frac{1}{2x+1}\right)e^{\ln(2x+1)}+ce^{\ln(2x+1)}

=(ln(2x+1)+12x+1)(2x+1)+cln(2x+1)\displaystyle =\left(\ln(2x+1)+\frac{1}{2x+1}\right)(2x+1)+c\ln(2x+1)

=(2x+1)ln(2x+1)+1+c(2x+1)\displaystyle =(2x+1)\ln(2x+1)+1+c(2x+1)

=(2x+1)[c+ln(2x+1)]+1=(2x+1)[c+\ln(2x+1)]+1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment