Solve the Non-exact Equation
v(u2+v2)du - u(u2+2v2)dv
Given, "v(u^2+v^2)du - u(u^2+2v^2)dv=0"
Replace u with x and v with y.
"y(x^2+y^2)dx - x(x^2+2y^2)dy=0\n\\\\ \\Rightarrow \\dfrac{dy}{dx}=\\dfrac{y(x^2+y^2)}{x(x^2+2y^2)}\\ ...(i)"
Put "y=vx\\ ...(ii)"
"\\Rightarrow \\dfrac{dy}{dx}=v+x\\dfrac{dv}{dx}\\ ...(iii)"
From (i), (ii) and (iii).
"v+ \\dfrac{dv}{dx}=\\dfrac{vx(x^2+v^2x^2)}{x(x^2+2v^2x^2)}\n\\\\ \\Rightarrow \\dfrac{dv}{dx}=\\dfrac{v(1+v^2)}{(1+2v^2)}-v\n\\\\ \\Rightarrow \\dfrac{dv}{dx}=\\dfrac{v+v^3-v-2v^3}{(1+2v^2)}\n\\\\ \\Rightarrow \\dfrac{dv}{dx}=\\dfrac{-v^3}{(1+2v^2)}\n\\\\ \\Rightarrow \\dfrac{(1+2v^2)dv}{v^3}=-dx\n\\\\ \\Rightarrow (\\dfrac{1}{v^3}+\\dfrac{2}{v})dv=-dx"
On integrating both sides,
"-\\dfrac{1}{2v^2}+2\\log v=-x+C\n\\\\ \\Rightarrow-\\dfrac{1}{2(\\frac yx)^2}+2\\log \\frac yx=-x+C\n\\\\ \\Rightarrow-\\dfrac{x^2}{2y^2}+2\\log \\dfrac yx=-x+C"
Now, replace u with x and v with y back
"-\\dfrac{u^2}{2v^2}+2\\log \\dfrac vu=-u+C"
Comments
Leave a comment