Answer to Question #292676 in Differential Equations for Nice

Question #292676

Solve the Non-exact Equation



v(u2+v2)du - u(u2+2v2)dv

1
Expert's answer
2022-02-02T09:23:43-0500

Solution:

Given, v(u2+v2)duu(u2+2v2)dv=0v(u^2+v^2)du - u(u^2+2v^2)dv=0

Replace u with x and v with y.

y(x2+y2)dxx(x2+2y2)dy=0dydx=y(x2+y2)x(x2+2y2) ...(i)y(x^2+y^2)dx - x(x^2+2y^2)dy=0 \\ \Rightarrow \dfrac{dy}{dx}=\dfrac{y(x^2+y^2)}{x(x^2+2y^2)}\ ...(i)

Put y=vx ...(ii)y=vx\ ...(ii)

dydx=v+xdvdx ...(iii)\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}\ ...(iii)

From (i), (ii) and (iii).

v+dvdx=vx(x2+v2x2)x(x2+2v2x2)dvdx=v(1+v2)(1+2v2)vdvdx=v+v3v2v3(1+2v2)dvdx=v3(1+2v2)(1+2v2)dvv3=dx(1v3+2v)dv=dxv+ \dfrac{dv}{dx}=\dfrac{vx(x^2+v^2x^2)}{x(x^2+2v^2x^2)} \\ \Rightarrow \dfrac{dv}{dx}=\dfrac{v(1+v^2)}{(1+2v^2)}-v \\ \Rightarrow \dfrac{dv}{dx}=\dfrac{v+v^3-v-2v^3}{(1+2v^2)} \\ \Rightarrow \dfrac{dv}{dx}=\dfrac{-v^3}{(1+2v^2)} \\ \Rightarrow \dfrac{(1+2v^2)dv}{v^3}=-dx \\ \Rightarrow (\dfrac{1}{v^3}+\dfrac{2}{v})dv=-dx

On integrating both sides,

12v2+2logv=x+C12(yx)2+2logyx=x+Cx22y2+2logyx=x+C-\dfrac{1}{2v^2}+2\log v=-x+C \\ \Rightarrow-\dfrac{1}{2(\frac yx)^2}+2\log \frac yx=-x+C \\ \Rightarrow-\dfrac{x^2}{2y^2}+2\log \dfrac yx=-x+C

Now, replace u with x and v with y back

u22v2+2logvu=u+C-\dfrac{u^2}{2v^2}+2\log \dfrac vu=-u+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment