Given, v(u2+v2)du−u(u2+2v2)dv=0
Replace u with x and v with y.
y(x2+y2)dx−x(x2+2y2)dy=0⇒dxdy=x(x2+2y2)y(x2+y2) ...(i)
Put y=vx ...(ii)
⇒dxdy=v+xdxdv ...(iii)
From (i), (ii) and (iii).
v+dxdv=x(x2+2v2x2)vx(x2+v2x2)⇒dxdv=(1+2v2)v(1+v2)−v⇒dxdv=(1+2v2)v+v3−v−2v3⇒dxdv=(1+2v2)−v3⇒v3(1+2v2)dv=−dx⇒(v31+v2)dv=−dx
On integrating both sides,
−2v21+2logv=−x+C⇒−2(xy)21+2logxy=−x+C⇒−2y2x2+2logxy=−x+C
Now, replace u with x and v with y back
−2v2u2+2loguv=−u+C
Comments
Leave a comment