(D2−4DD′+4D′2)z=e2x+yThe auxilliary equation is m2−4m+4=0(m−2)2=0m=2 twiceThe complementary function is:
f1(y+2x)+x⋅f2(y+2x)
To get the particular integral.
P.I=(D2−4DD′+4D′2)1e2x+yP.I=(D−2D′)21e2x+yP.I=12⋅⌊2x2e2x+yP.I=2x2e2x+y
Hence, the complete solution is the sum of the complementary function and the particular integral.
=f1(y+2x)+x⋅f2(y+2x)+2x2e2x+y
Comments