Question #291977

(D^ 2 -40D' +4D'^2)Z=e^ (2x+y)

1
Expert's answer
2022-01-31T15:28:29-0500

(D24DD+4D2)z=e2x+yThe auxilliary equation is m24m+4=0(m2)2=0m=2 twiceThe complementary function is:(D^2-4DD'+4D'^2)z=e^{2x+y}\\ \text{The auxilliary equation is }\\ m^2-4m+4=0\\ (m-2)^2=0\\ m=2 \text{ twice}\\ \text{The complementary function is:}\\


f1(y+2x)+xf2(y+2x)f_1(y+2x)+x \cdot f_2(y+2x)


To get the particular integral.

P.I=1(D24DD+4D2)e2x+yP.I=1(D2D)2e2x+yP.I=x2122e2x+yP.I=x22e2x+yP.I=\frac{1}{(D^2-4DD'+4D'^2)}e^{2x+y}\\ P.I= \frac{1}{(D-2D')^2}e^{2x+y}\\ P.I=\frac{x^2}{1^2\cdot \lfloor{2}}e^{2x+y}\\ P.I=\frac{x^2}{2}e^{2x+y}

Hence, the complete solution is the sum of the complementary function and the particular integral.


=f1(y+2x)+xf2(y+2x)+x22e2x+y=f_1(y+2x)+x \cdot f_2(y+2x)+\frac{x^2}{2}e^{2x+y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS