The actual question is;
(D2−4DD′+4(D′)2)z=e2x+y,where D=∂x∂,and D′=∂y∂
To find the complementary function (C.F), let D=m,and D′=1, then the auxiliary equation of the given PDE in terms of variable m is;
m2−4m+4=0
⇒(m−2)(m−2)=0⇒m=2(twice)
Thus the complementary function of the given PDE is;
C.F=zc=f1(y+2x)+xf2(y+2x)
Next, to find the particular integral (P.I) of the given PDE, we proceed as follows;
P.I=(D2−4DD′+4(D′)2)1e2x+y=x(2D−4D′)1e2x+y=2x2e2x+y.
Thus the particular integral of the given PDE is;
P.I=zp=2x2e2x+y
Since complete solution (z) is z=zc+zp, thus we have the complete solution as;
z=f1(y+2x)+xf2(y+2x)+2x2e2x+y
Comments