Question #291975

(D^ 2 -40D' +4D'^2)2=e^ (2x+y)

1
Expert's answer
2022-01-31T16:35:46-0500

The actual question is;

(D24DD+4(D)2)z=e2x+y,where D=x,and D=y\displaystyle (D^2-4DD^\prime+4(D^\prime)^2)z=e^{2x+y}, \text{where }D=\frac{\partial}{\partial x}, \text{and}\ D^\prime =\frac{\partial}{\partial y}


To find the complementary function (C.F), let D=m,and D=1,\displaystyle D=m, \text{and }D^\prime=1, then the auxiliary equation of the given PDE in terms of variable m is;

m24m+4=0\displaystyle m^2-4m+4=0

(m2)(m2)=0m=2(twice)\displaystyle \Rightarrow (m-2)(m-2)=0\Rightarrow m=2(\text{twice})

Thus the complementary function of the given PDE is;

C.F=zc=f1(y+2x)+xf2(y+2x)\displaystyle \color{green}{C.F=z_c=f_1(y+2x)+xf_2(y+2x)}


Next, to find the particular integral (P.I) of the given PDE, we proceed as follows;

P.I=1(D24DD+4(D)2)e2x+y=x1(2D4D)e2x+y=x22e2x+y.\displaystyle P.I=\frac{1}{(D^2-4DD^\prime+4(D^\prime)^2)}e^{2x+y}=x\frac{1}{(2D-4D^\prime)}e^{2x+y}=\frac{x^2}{2}e^{2x+y}.

Thus the particular integral of the given PDE is;

P.I=zp=x22e2x+y\displaystyle \color{blue}{P.I=z_p=\frac{x^2}{2}e^{2x+y}}

Since complete solution (z) is z=zc+zp\displaystyle \color{red}{z=z_c+z_p}, thus we have the complete solution as;

z=f1(y+2x)+xf2(y+2x)+x22e2x+y\displaystyle \color{red}{z=f_1(y+2x)+xf_2(y+2x)+\frac{x^2}{2}e^{2x+y}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS