We are given
y ′ ′ − 2 tan x ( y ′ ) + 5 y = e x sec x y''-2\tan x(y')+5y=e^x \sec x y ′′ − 2 tan x ( y ′ ) + 5 y = e x sec x
cos x y ′ ′ − 2 sin x ( y ′ ) + 5 y cos x = e x \cos xy''-2\sin x(y')+5y\cos x=e^x cos x y ′′ − 2 sin x ( y ′ ) + 5 y cos x = e x We will be looking for a solution in the form
u ( x ) = y ( x ) cos x u(x)=y(x)\cos x u ( x ) = y ( x ) cos x Then
u ′ = y ′ cos x − y sin x u'=y'\cos x-y\sin x u ′ = y ′ cos x − y sin x
u ′ ′ = y ′ ′ cos x − 2 y ′ sin x − y cos x u''=y''\cos x-2y'\sin x-y\cos x u ′′ = y ′′ cos x − 2 y ′ sin x − y cos x Hence
cos x y ′ ′ − 2 sin x ( y ′ ) = u ′ ′ + u \cos xy''-2\sin x(y')=u''+u cos x y ′′ − 2 sin x ( y ′ ) = u ′′ + u Substitute
u ′ ′ + u + 5 u = e x u''+u+5u=e^x u ′′ + u + 5 u = e x Corresponding homogeneous differentional equation
u ′ ′ + 6 u = 0 u''+6u=0 u ′′ + 6 u = 0 Characteristic (auxiliary) equation
r 2 + 6 = 0 r^2+6=0 r 2 + 6 = 0
r = ± i 6 r=\pm i\sqrt{6} r = ± i 6 The general solution of the homogeneous differentional equation is
u h = c 1 cos ( 6 x ) + c 2 sin ( 6 x ) u_h=c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x) u h = c 1 cos ( 6 x ) + c 2 sin ( 6 x ) Find the partial solution in the form
u p = A e x u_p=Ae^x u p = A e x
u p ′ = A e x u_p'=Ae^x u p ′ = A e x
u p ′ ′ = A e x u_p''=Ae^x u p ′′ = A e x Substitute
A e x + 6 A e x = e x Ae^x+6Ae^x=e^x A e x + 6 A e x = e x
A = 1 7 A=\dfrac{1}{7} A = 7 1
u p = 1 7 e x u_p=\dfrac{1}{7}e^x u p = 7 1 e x The general solution of the non homogeneous differentional equation is
u = c 1 cos ( 6 x ) + c 2 sin ( 6 x ) + 1 7 e x u=c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x)+\dfrac{1}{7}e^x u = c 1 cos ( 6 x ) + c 2 sin ( 6 x ) + 7 1 e x Therefore the solution of the given differential equation is
y = 1 cos x ( c 1 cos ( 6 x ) + c 2 sin ( 6 x ) + 1 7 e x ) y=\dfrac{1}{\cos x}(c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x)+\dfrac{1}{7}e^x) y = cos x 1 ( c 1 cos ( 6 x ) + c 2 sin ( 6 x ) + 7 1 e x )
Comments