Answer to Question #290999 in Differential Equations for CHINTU

Question #290999

Solve (d ^ 2 * y)/(d * x ^ 2) - 2tan x * (dy)/(dx) + 5y =


1
Expert's answer
2022-01-27T14:03:19-0500

We are given


y2tanx(y)+5y=exsecxy''-2\tan x(y')+5y=e^x \sec x

cosxy2sinx(y)+5ycosx=ex\cos xy''-2\sin x(y')+5y\cos x=e^x

We will be looking for a solution in the form


u(x)=y(x)cosxu(x)=y(x)\cos x

Then


u=ycosxysinxu'=y'\cos x-y\sin x

u=ycosx2ysinxycosxu''=y''\cos x-2y'\sin x-y\cos x

Hence


cosxy2sinx(y)=u+u\cos xy''-2\sin x(y')=u''+u

Substitute


u+u+5u=exu''+u+5u=e^x

Corresponding homogeneous differentional equation


u+6u=0u''+6u=0

Characteristic (auxiliary) equation


r2+6=0r^2+6=0

r=±i6r=\pm i\sqrt{6}

The general solution of the homogeneous differentional equation is


uh=c1cos(6x)+c2sin(6x)u_h=c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x)

Find the partial solution in the form


up=Aexu_p=Ae^x

up=Aexu_p'=Ae^x

up=Aexu_p''=Ae^x

Substitute


Aex+6Aex=exAe^x+6Ae^x=e^x

A=17A=\dfrac{1}{7}

up=17exu_p=\dfrac{1}{7}e^x

The general solution of the non homogeneous differentional equation is


u=c1cos(6x)+c2sin(6x)+17exu=c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x)+\dfrac{1}{7}e^x

Therefore the solution of the given differential equation is


y=1cosx(c1cos(6x)+c2sin(6x)+17ex)y=\dfrac{1}{\cos x}(c_1\cos (\sqrt{6}x)+c_2 \sin (\sqrt{6}x)+\dfrac{1}{7}e^x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment