Find the general solution to the differential equation 4d^2y/dx^2+4dy/dx+y=0
Charasteristic equation:
4k2+4k+1=04{k^2} + 4k + 1 = 04k2+4k+1=0
D=16−16=0D = 16 - 16 = 0D=16−16=0
k=−48=−12k = \frac{{ - 4}}{8} = - \frac{1}{2}k=8−4=−21
Then
y=C1ekx+xC2ekx=C1e−12x+xC2e−12xy = {C_1}{e^{kx}} + x{C_2}{e^{kx}} = {C_1}{e^{ - \frac{1}{2}x}} + x{C_2}{e^{ - \frac{1}{2}x}}y=C1ekx+xC2ekx=C1e−21x+xC2e−21x
Answer: y=C1e−12x+xC2e−12xy = {C_1}{e^{ - \frac{1}{2}x}} + x{C_2}{e^{ - \frac{1}{2}x}}y=C1e−21x+xC2e−21x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments