Let y=∑n=0∞anxn,Then,y′=∑n=1∞nanxn−1,Therefore,xy′=y ⇒x∑n=1∞nanxn−1=∑n=0∞anxn⇒∑n=1∞nanxn=∑n=0∞anxn⇒∑n=0∞anxn−∑n=1∞nanxn=0⇒a0+∑n=1∞anxn−∑n=1∞nanxn=0⇒a0+∑n=1∞an(1−n)xn=0⇒∑n=0∞an(1−n)xn=0⇒∑n=0∞an(1−n)xn=∑n=0∞(0×xn)⇒an(1−n)=0,for n∈N⇒an=(1−n)0=0,if n=1⇒a1∈RHence, y=∑n=0∞anxn=a0+a1x+a2x2+⋯=a1xTherefore, the series solution to the given equation is:y=a1x,where a1∈R.
Comments