Question #289762

Find a power series solution of xy'=y

1
Expert's answer
2022-01-25T12:54:47-0500

Let y=n=0anxn,Then,y=n=1nanxn1,Therefore,xy=y xn=1nanxn1=n=0anxnn=1nanxn=n=0anxnn=0anxnn=1nanxn=0a0+n=1anxnn=1nanxn=0a0+n=1an(1n)xn=0n=0an(1n)xn=0n=0an(1n)xn=n=0(0×xn)an(1n)=0,for nNan=0(1n)=0,if n1a1RHence, y=n=0anxn=a0+a1x+a2x2+=a1xTherefore, the series solution to the given equation is:y=a1x,where a1R.\text{Let}\ y=\sum_{n=0}^{\infty}a_nx^n, \\ \text{Then}, y\prime=\sum_{n=1}^{\infty}na_nx^{n-1}, \\ \text{Therefore}, xy\prime=y\ \Rightarrow x\sum_{n=1}^{\infty}na_nx^{n-1}=\sum_{n=0}^{\infty}a_nx^n\\ \Rightarrow \sum_{n=1}^{\infty}na_nx^n=\sum_{n=0}^{\infty}a_nx^n\\ \Rightarrow\sum_{n=0}^{\infty}a_nx^n-\sum_{n=1}^{\infty}na_nx^n=0\\ \Rightarrow a_0+\sum_{n=1}^{\infty}a_nx^n-\sum_{n=1}^{\infty}na_nx^n=0\\ \Rightarrow a_0+\sum_{n=1}^{\infty}a_n(1-n)x^n=0\\ \Rightarrow \sum_{n=0}^{\infty}a_n(1-n)x^n=0\\ \Rightarrow \sum_{n=0}^{\infty}a_n(1-n)x^n=\sum_{n=0}^{\infty}(0 \times x^n)\\ \Rightarrow a_n(1-n)=0, \text{for}\ n\in\N\\ \Rightarrow a_n=\frac{0}{(1-n)}=0, \text{if}\ n\neq1\\ \Rightarrow a_1\in\R\\ \text{Hence, }y=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+\cdots=a_1x\\ \text{Therefore, the series solution to the given equation is:}\\ y=a_1x, \text{where } a_1\in \R.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS