Question #291609

3d^2y/dx^2+dy/dx-14y=0 ; y(0)=1 , y'(0)=-1


1
Expert's answer
2022-01-30T16:25:40-0500

Characteristic (auxiliary) equation


3r2+r14=03r^2+r-14=0

D=(1)24(3)(14)=169D=(1)^2-4(3)(-14)=169


r=1±132(3)r=\dfrac{-1\pm13}{2(3)}

r1=73,r2=2r_1=-\dfrac{7}{3}, r_2=2

The general solution of the differential equation is


y=c1e7x/3+c2e2xy=c_1e^{-7x/3}+c_2e^{2x}

Given y(0)=1y(0)=1


1=c1+c21=c_1+c_2

y=73c1e7x/3+2c2e2xy'=-\dfrac{7}{3}c_1e^{-7x/3}+2c_2e^{2x}

Given y(0)=1y'(0)=-1


73c1+2c2=1-\dfrac{7}{3}c_1+2c_2=-1

c1=913,c2=413c_1=\dfrac{9}{13}, c_2=\dfrac{4}{13}

The solution of given IVP is


y=913e7x/3+413e2xy=\dfrac{9}{13}e^{-7x/3}+\dfrac{4}{13}e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS