Solve the first order linear inhomogeneous differential equation using the constant variation method
xy,-2y=2x4
Given a first order inhomogeneous linear differential equation of the form;
"\\displaystyle\ny\\prime+p(x)y=f(x)\\cdots\\cdots\\cdots\\color{red}(1)"
using constant variation method, the general solution is given by;
"\\displaystyle\ny(x)=v(x)e^{q(x)}+ce^{q(x)}"
where "\\displaystyle\nv\\prime(x)=e^{-q(x)}f(x)", "\\displaystyle\nq(x)=\\int[-p(x)]\\ dx", and "c" is an arbitrary constant.
Now, the given DE is of the form;
"y\\prime-\\frac{2}{x}y=2x^3"
By comparing the given DE with "\\color{red}(1)";
"\\displaystyle\nq(x)=\\int[-p(x)]\\ dx=\\int\\frac{2}{x}\\ dx=2\\ln x=\\ln x^2"
"\\displaystyle\nv\\prime(x)=e^{-q(x)\\ dx}\\times f(x)=e^{-\\ln x^2}\\times2x^3=\\frac{1}{x^2}\\times2x^3=2x"
"\\displaystyle\n\\Rightarrow v(x)=\\int2x\\ dx=x^2"
Thus, the general solution is;
"\\displaystyle\ny(x)=v(x)e^{q(x)}+ce^{q(x)}=x^2e^{\\ln x^2}+ce^{\\ln{x^2}}=x^4+cx^2"
Comments
Leave a comment