Answer to Question #292771 in Differential Equations for luna

Question #292771

Solve the first order linear inhomogeneous differential equation using the constant variation method

xy,-2y=2x4

1
Expert's answer
2022-02-07T16:23:36-0500

Given a first order inhomogeneous linear differential equation of the form;

y+p(x)y=f(x)(1)\displaystyle y\prime+p(x)y=f(x)\cdots\cdots\cdots\color{red}(1)

using constant variation method, the general solution is given by;

y(x)=v(x)eq(x)+ceq(x)\displaystyle y(x)=v(x)e^{q(x)}+ce^{q(x)}

where v(x)=eq(x)f(x)\displaystyle v\prime(x)=e^{-q(x)}f(x), q(x)=[p(x)] dx\displaystyle q(x)=\int[-p(x)]\ dx, and cc is an arbitrary constant.


Now, the given DE is of the form;

y2xy=2x3y\prime-\frac{2}{x}y=2x^3

By comparing the given DE with (1)\color{red}(1);

q(x)=[p(x)] dx=2x dx=2lnx=lnx2\displaystyle q(x)=\int[-p(x)]\ dx=\int\frac{2}{x}\ dx=2\ln x=\ln x^2

v(x)=eq(x) dx×f(x)=elnx2×2x3=1x2×2x3=2x\displaystyle v\prime(x)=e^{-q(x)\ dx}\times f(x)=e^{-\ln x^2}\times2x^3=\frac{1}{x^2}\times2x^3=2x

v(x)=2x dx=x2\displaystyle \Rightarrow v(x)=\int2x\ dx=x^2


Thus, the general solution is;

y(x)=v(x)eq(x)+ceq(x)=x2elnx2+celnx2=x4+cx2\displaystyle y(x)=v(x)e^{q(x)}+ce^{q(x)}=x^2e^{\ln x^2}+ce^{\ln{x^2}}=x^4+cx^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment