separate the differential equation into variables
xydx + (x+1)dy=0
xydx+(x+1)dy=0xydx=−(x+1)dyxdxx+1=−dyyxydx + (x+1)dy=0\\ xydx =- (x+1)dy\\ \frac{xdx}{x+1}=-\frac{dy}{y}xydx+(x+1)dy=0xydx=−(x+1)dyx+1xdx=−ydy
Let, x+1=t⇒dx=dtx+1=t\Rightarrow dx=dtx+1=t⇒dx=dt
t−1tdt=−dyy\frac{t-1}{t}dt=-\frac{dy}{y}tt−1dt=−ydy
(1−1t)dt=(1-\frac{1}{t})dt=(1−t1)dt= −dyy-\frac{dy}{y}−ydy
Integrating both sides, we get
t−lnt=−lny+ct-\ln t=-\ln y+ct−lnt=−lny+c
x+1−ln(x+1)=−lny+cx+1-\ln (x+1)=-\ln y+cx+1−ln(x+1)=−lny+c
x−ln(x+1)+lny+1=cx-\ln (x+1)+\ln y+1=cx−ln(x+1)+lny+1=c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments