Question #293872

Show that y=c1epower x +c2e power 2x is the general solution of y"-3y'+2y=0 on any interval and find the particular solution for which y(0) =1




1
Expert's answer
2022-02-06T16:20:23-0500

We want to show that y=c1ex+c2e2x is the general solution of y3y+2y=0\displaystyle y=c_1e^x+c_2e^{2x} \text{ is the general solution of }y\prime\prime-3y\prime+2y=0\\ on any interval and find the particular solution for which y(0)=1\displaystyle y(0)=1.

Now,

y=c1ex+c2e2xy=c1ex+2c2e2xy=c1+4c2e2xy=c_1e^x+c_2e^{2x}\\ y\prime=c_1e^x+2c_2e^{2x}\\ y\prime\prime=c_1+4c_2e^{2x}

Substituting y,y,y\displaystyle y, y\prime, y\prime\prime into the given DE yields;

(c1ex+4c2e2x)3(c1ex+2c2e2x)+2(c1ex+c2e2x)=0c1ex+4c2e2x3c1ex6c2e2x+2c1ex+2c2e2x=0ex(c13c1+2c1)+e2x(4c26c2+2c2)=0ex(0)+e2x(0)=00=0\displaystyle (c_1e^x+4c_2e^{2x})-3(c_1e^x+2c_2e^{2x})+2(c_1e^x+c_2e^{2x})=0\\ \Rightarrow c_1e^x+4c_2e^{2x}-3c_1e^x-6c_2e^{2x}+2c_1e^x+2c_2e^{2x}=0\\ \Rightarrow e^x(c_1-3c_1+2c_1)+e^{2x}(4c_2-6c_2+2c_2)=0\\ \Rightarrow e^x(0)+e^{2x}(0)=0\\ \Rightarrow 0=0

Hence, we have shown that y=c1ex+c2e2x\displaystyle y=c_1e^x+c_2e^{2x} is the general solution of the given DE on any interval.


Next, at y(0)=1\displaystyle y(0)=1, we have;

1=c1+c2c1=1c2\displaystyle 1=c_1+c_2\Rightarrow c_1=1-c_2

Thus, the particular solution is for which y(0)=1\displaystyle y(0)=1 is; y=c1ex+c2e2x=(1c2)ex+c2e2x\displaystyle y=c_1e^x+c_2e^{2x}=(1-c_2)e^x+c_2e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS