Show that y=c1epower x +c2e power 2x is the general solution of y"-3y'+2y=0 on any interval and find the particular solution for which y(0) =1
We want to show that "\\displaystyle \ny=c_1e^x+c_2e^{2x} \\text{ is the general solution of }y\\prime\\prime-3y\\prime+2y=0\\\\" on any interval and find the particular solution for which "\\displaystyle\ny(0)=1".
Now,
"y=c_1e^x+c_2e^{2x}\\\\\ny\\prime=c_1e^x+2c_2e^{2x}\\\\\ny\\prime\\prime=c_1+4c_2e^{2x}"
Substituting "\\displaystyle\ny, y\\prime, y\\prime\\prime" into the given DE yields;
"\\displaystyle\n(c_1e^x+4c_2e^{2x})-3(c_1e^x+2c_2e^{2x})+2(c_1e^x+c_2e^{2x})=0\\\\\n\\Rightarrow c_1e^x+4c_2e^{2x}-3c_1e^x-6c_2e^{2x}+2c_1e^x+2c_2e^{2x}=0\\\\\n\\Rightarrow e^x(c_1-3c_1+2c_1)+e^{2x}(4c_2-6c_2+2c_2)=0\\\\\n\\Rightarrow e^x(0)+e^{2x}(0)=0\\\\\n\\Rightarrow 0=0"
Hence, we have shown that "\\displaystyle \ny=c_1e^x+c_2e^{2x}" is the general solution of the given DE on any interval.
Next, at "\\displaystyle\ny(0)=1", we have;
"\\displaystyle\n1=c_1+c_2\\Rightarrow c_1=1-c_2"
Thus, the particular solution is for which "\\displaystyle\ny(0)=1" is; "\\displaystyle \ny=c_1e^x+c_2e^{2x}=(1-c_2)e^x+c_2e^{2x}"
Comments
Leave a comment