We are given; y′=2y+3ex, y(0)=0, h=0.1 (since step length is not given, I assume a step length of 0.1), x0=0,and y0=0.
Using Taylor's series method, we are to find y(0.2).
Now, differentiating the given DE successively yields;
y′=2y+3exy′′=2y′+3exy′′′=2y′′+3ex
Now, substituting yields;
y0′=2y0+3ex0=3y0′′=2y0′+3ex0=9y0′′′=2y0′′+3ex0=21
Putting these values into the Taylor's series yields;
y(0.1)=y1=y0+hy0′+2!h2y0′′+3!h3y0′′′+⋯
=0+0.1(3)+20.12×9+60.13×21+⋯=0.3485
Next, x1=0.1, and y1=0.3485. Thus substituting yields;
y1′=2y1+3ex1=4.012512754y1′′=2y1′+3ex1=11.34053826y1′′′=2y1′′+3ex1=25.99658928
Putting these values into the Taylor's series yields;
y(0.2)=y2=y1+hy1′+2!h2y1′′+3!h3y1′′′+⋯
=0.3485+0.1(4.012512754)+20.12×11.34053826
+60.13×25.99658928+⋯=0.8107867316
Thus, the approximate value of y(0.2) using Taylor's series is;
y(0.2)=0.8107867316
Solving directly yields;
y′=2y+3ex⇒y′−2y=3ex
Integrating Factor is;
e∫(−2) dx=e−2x
(y′−2y)e−2x=3ex×e−2x⇒dxd(ye−2x)=3e−x⇒ye−2x=∫3e−x dx=3∫e−x dx=−3e−x+c, where c is an arbitrary constant
⇒y=ce2x−3ex
Since y(0)=0, then c=3⇒y=3e2x−3ex
Now,
y(0.2)=3e2×0.2−3e0.2=3e0.4−3e0.2=0.8112658184
Comments