Question #293639

Use taylors series method to find approximate Value of y at x =0.2,given that dy/dx =2y+3ex,y(0)=0 comapre the result by solving the differential equation


1
Expert's answer
2022-02-08T15:25:29-0500

We are given; y=2y+3ex, y(0)=0, h=0.1\displaystyle y\prime=2y+3e^x,\ y(0)=0,\ h=0.1 (since step length is not given, I assume a step length of 0.10.1), x0=0,and y0=0\displaystyle x_0=0,\text{and } y_0=0.

Using Taylor's series method, we are to find y(0.2).y(0.2).

Now, differentiating the given DE successively yields;

y=2y+3exy=2y+3exy=2y+3ex\displaystyle y\prime=2y+3e^x\\ y\prime\prime=2y\prime+3e^x\\ y\prime\prime\prime=2y\prime\prime+3e^x\\


Now, substituting yields;

y0=2y0+3ex0=3y0=2y0+3ex0=9y0=2y0+3ex0=21\displaystyle y_0\prime=2y_0+3e^{x_0}=3\\ y_0\prime\prime=2y_0\prime+3e^{x_0}=9\\ y_0\prime\prime\prime=2y_0\prime\prime+3e^{x_0}=21\\


Putting these values into the Taylor's series yields;

y(0.1)=y1=y0+hy0+h22!y0+h33!y0+\displaystyle y(0.1)=y_1=y_0+hy_0\prime+\frac{h^2}{2!}y_0\prime\prime+\frac{h^3}{3!}y_0\prime\prime\prime+\cdots

=0+0.1(3)+0.122×9+0.136×21+=0.3485\displaystyle =0+0.1(3)+\frac{0.1^2}{2}\times9+\frac{0.1^3}{6}\times21+\cdots=0.3485


Next, x1=0.1x_1=0.1, and y1=0.3485y_1=0.3485. Thus substituting yields;

y1=2y1+3ex1=4.012512754y1=2y1+3ex1=11.34053826y1=2y1+3ex1=25.99658928\displaystyle y_1\prime=2y_1+3e^{x_1}=4.012512754\\ y_1\prime\prime=2y_1\prime+3e^{x_1}=11.34053826\\ y_1\prime\prime\prime=2y_1\prime\prime+3e^{x_1}=25.99658928\\

Putting these values into the Taylor's series yields;

y(0.2)=y2=y1+hy1+h22!y1+h33!y1+\displaystyle y(0.2)=y_2=y_1+hy_1\prime+\frac{h^2}{2!}y_1\prime\prime+\frac{h^3}{3!}y_1\prime\prime\prime+\cdots

=0.3485+0.1(4.012512754)+0.122×11.34053826\displaystyle =0.3485+0.1(4.012512754)+\frac{0.1^2}{2}\times11.34053826

+0.136×25.99658928+=0.8107867316\displaystyle +\frac{0.1^3}{6}\times25.99658928+\cdots=0.8107867316

Thus, the approximate value of y(0.2)y(0.2) using Taylor's series is;

y(0.2)=0.8107867316y(0.2)=0.8107867316


Solving directly yields;

y=2y+3exy2y=3ex\displaystyle y\prime=2y+3e^x\Rightarrow y\prime-2y=3e^x

Integrating Factor is;

e(2) dx=e2x\displaystyle e^{\int(-2)\ dx}=e^{-2x}

\displaystyle(y2y)e2x=3ex×e2xddx(ye2x)=3exye2x=3ex dx=3ex dx=3ex+c\displaystyle (y\prime-2y)e^{-2x}=3e^x\times e^{-2x}\\ \Rightarrow \frac{d}{dx}(ye^{-2x})=3e^{-x}\\ \Rightarrow ye^{-2x}=\int3e^{-x}\ dx=3\int e^{-x}\ dx=-3e^{-x}+c, where c is an arbitrary constant

y=ce2x3ex\displaystyle \Rightarrow y=ce^{2x}-3e^{x}

Since y(0)=0, then c=3y=3e2x3ex\displaystyle y(0)=0, \text{ then }c=3\Rightarrow y=3e^{2x}-3e^{x}\\

Now,

y(0.2)=3e2×0.23e0.2=3e0.43e0.2=0.8112658184\displaystyle y(0.2)=3e^{2\times0.2}-3e^{0.2}=3e^{0.4}-3e^{0.2}=0.8112658184


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS