Find the solution of
(D^2-4D+4)y=12x+2e^(3x)
The given DE is "\\displaystyle\n(D^2-4D+4)y=12x+2e^{3x}".
Now, the auxiliary equation is;
"m^2-4m+4=0\\Rightarrow(m-2)^2=0\\Rightarrow m=2" (twice)
"\\therefore y_c=(c_1+c_2x)e^{2x}", where "c_1,c_2" are constants.
Next, to obtain the particular integral;
"y_p=(D^2-4D+4)^{-1}12x+\\frac{1}{D^2-4D+4}2e^{3x}\\\\\n\\quad\\ =3\\left[1-D+\\frac{D^2}{4}\\right]^{-1}x+\\frac{1}{9-12+4}2e^{3x}\\\\\n\\quad\\ =3\\left[1+D-\\frac{D^2}{4}\\right]x+2e^{3x}\\\\\n\\quad\\ =3\\left[x+D(x)-\\frac{D^2}{4}(x)\\right]+2e^{3x}\\\\\n\\quad\\ =3[x+1-0]+2e^{3x}=3x+3+2e^{3x}"
Thus, the general solution is;
"y=y_c+y_p=(c_1+c_2x)e^{2x}+3x+3+2e^{3x}"
Comments
Leave a comment