The given DE is (D2−4D+4)y=12x+2e3x.
Now, the auxiliary equation is;
m2−4m+4=0⇒(m−2)2=0⇒m=2 (twice)
∴yc=(c1+c2x)e2x, where c1,c2 are constants.
Next, to obtain the particular integral;
yp=(D2−4D+4)−112x+D2−4D+412e3x =3[1−D+4D2]−1x+9−12+412e3x =3[1+D−4D2]x+2e3x =3[x+D(x)−4D2(x)]+2e3x =3[x+1−0]+2e3x=3x+3+2e3x
Thus, the general solution is;
y=yc+yp=(c1+c2x)e2x+3x+3+2e3x
Comments