Question #294037

Find the solution of


(D^2-4D+4)y=12x+2e^(3x)

1
Expert's answer
2022-02-07T15:16:10-0500

The given DE is (D24D+4)y=12x+2e3x\displaystyle (D^2-4D+4)y=12x+2e^{3x}.

Now, the auxiliary equation is;

m24m+4=0(m2)2=0m=2m^2-4m+4=0\Rightarrow(m-2)^2=0\Rightarrow m=2 (twice)

yc=(c1+c2x)e2x\therefore y_c=(c_1+c_2x)e^{2x}, where c1,c2c_1,c_2 are constants.


Next, to obtain the particular integral;

yp=(D24D+4)112x+1D24D+42e3x =3[1D+D24]1x+1912+42e3x =3[1+DD24]x+2e3x =3[x+D(x)D24(x)]+2e3x =3[x+10]+2e3x=3x+3+2e3xy_p=(D^2-4D+4)^{-1}12x+\frac{1}{D^2-4D+4}2e^{3x}\\ \quad\ =3\left[1-D+\frac{D^2}{4}\right]^{-1}x+\frac{1}{9-12+4}2e^{3x}\\ \quad\ =3\left[1+D-\frac{D^2}{4}\right]x+2e^{3x}\\ \quad\ =3\left[x+D(x)-\frac{D^2}{4}(x)\right]+2e^{3x}\\ \quad\ =3[x+1-0]+2e^{3x}=3x+3+2e^{3x}


Thus, the general solution is;

y=yc+yp=(c1+c2x)e2x+3x+3+2e3xy=y_c+y_p=(c_1+c_2x)e^{2x}+3x+3+2e^{3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS