Corresponding homogeneous equation
(D3+D2+D+1)y=0 Characteristic (auxiliary)equation
r3+r2+r+1=0
r2(r+1)+(r+1)=0
(r+1)(r2+1)=0
r1=−1,r2=i,r3=−i The general solution of the homogeneous differential equation is
yh=c1ex+c2sinx+c3cosx The particular solution of the non homogeneous equation is
yp=Axsinx+Bxcosx
yp′=Asinx+Axcosx+Bcosx−Bxsinx
yp′′=2Acosx−Axsinx−2Bsinx−Bxcosx
yp′′′=−3Asinx−Axcosx−3Bcosx+Bxsinx Substitute
−3Asinx−Axcosx−3Bcosx+Bxsinx
+2Acosx−Axsinx−2Bsinx−Bxcosx
+Asinx+Axcosx+Bcosx−Bxsinx
+Axsinx+Bxcosx=sinx
xsinx:B−A−B+A=0
xcosx:−A−B+A+B=0
sinx:−3A−2B+A=1
cosx:−3B+2A+B=0
A=B=−41
The general solution of the given non homogeneous differential equation is
y=c1ex+c2sinx+c3cosx−4xsinx−4xcosx
Comments