Answer to Question #294530 in Differential Equations for Raima

Question #294530

Solve the exact differential equation = ( x - 2ey ) dy + y + ( xsin(x) ) dx = 0


1
Expert's answer
2022-02-07T16:34:31-0500
P(x,y)=y+xsinx,Py=1P(x,y)=y+x\sin x, \dfrac{\partial P}{\partial y}=1

Q(x,y)=x2ey,Qx=1Q(x,y)=x-2e^y, \dfrac{\partial Q}{\partial x}=1

Py=1=Qx\dfrac{\partial P}{\partial y}=1=\dfrac{\partial Q}{\partial x}

Write the system of two differential equations that define the function u(x,y)u(x,y)


ux=y+xsinx\dfrac{\partial u}{\partial x}=y+x\sin x

uy=x2ey\dfrac{\partial u}{\partial y}=x-2e^y

u=(x2ey)dy+φ(x)u=\int(x-2e^y)dy+\varphi(x)

u=xy2ey+φ(x)u=xy-2e^y+\varphi(x)


ux=y+φ(x)=y+xsinx\dfrac{\partial u}{\partial x}=y+\varphi'(x)=y+x\sin x

φ(x)=xsinx\varphi'(x)=x\sin x


φ(x)=xsinxdx\varphi(x)=\int x\sin xdx

φ(x)=xcosx+sinx+C\varphi(x)=-x\cos x+\sin x+C


u=xy2eyxcosx+sinx+Cu=xy-2e^y-x\cos x+\sin x+C

xy+2ey+xcosxsinx=C-xy+2e^y+x\cos x-\sin x=C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment