Answer to Question #295579 in Differential Equations for chinchu

Question #295579

show that y= c1e^x +c2^2x is the general soloution of ydobledash -3ydash+2y=0


1
Expert's answer
2022-02-10T03:46:29-0500

Solution:

y=c1ex+c2e2x To verify the equation y3y+2y=0y=dydx=c1ex+2c2e2xy=d2ydx2=c1ex+4c2e2xc1ex+4c2e2x3(c1ex+2c2e2x)+2(c1ex+c2e2x)c1ex+4c2e2x3c1ex6c2e2x+2c1ex+2c2e2x6c2e2x6c2e2x0\begin{aligned} & y=c_{1} e^{x}+c_{2} e^{2 x} \\ & \text { To verify the equation } \\ & y^{\prime \prime}-3 y^{\prime}+2 y=0 \\ y^{\prime}=\frac{d y}{d x}=c_{1} e^{x}+2 c_{2} e^{2 x} \\ y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+4 c_{2} e^{2 x} \\ \Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3\left(c_{1} e^{x}+2 c_{2} e^{2 x}\right) \\ &+2\left(c_{1} e^{x}+c_{2} e^{2 x}\right) \\ \Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3 c_{1} e^{\prime x}-6 c_{2} e^{2 x} \\ &+2 c_{1} e^{x}+2 c_{2} e^{2 x} \\ \Rightarrow & 6 c_{2} e^{2 x}-6 c_{2} e^{2 x} \\ \Rightarrow & 0 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment