show that y= c1e^x +c2^2x is the general soloution of ydobledash -3ydash+2y=0
y=c1ex+c2e2x To verify the equation y′′−3y′+2y=0y′=dydx=c1ex+2c2e2xy′′=d2ydx2=c1ex+4c2e2x⇒c1ex+4c2e2x−3(c1ex+2c2e2x)+2(c1ex+c2e2x)⇒c1ex+4c2e2x−3c1e′x−6c2e2x+2c1ex+2c2e2x⇒6c2e2x−6c2e2x⇒0\begin{aligned} & y=c_{1} e^{x}+c_{2} e^{2 x} \\ & \text { To verify the equation } \\ & y^{\prime \prime}-3 y^{\prime}+2 y=0 \\ y^{\prime}=\frac{d y}{d x}=c_{1} e^{x}+2 c_{2} e^{2 x} \\ y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+4 c_{2} e^{2 x} \\ \Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3\left(c_{1} e^{x}+2 c_{2} e^{2 x}\right) \\ &+2\left(c_{1} e^{x}+c_{2} e^{2 x}\right) \\ \Rightarrow & c_{1} e^{x}+4 c_{2} e^{2 x}-3 c_{1} e^{\prime x}-6 c_{2} e^{2 x} \\ &+2 c_{1} e^{x}+2 c_{2} e^{2 x} \\ \Rightarrow & 6 c_{2} e^{2 x}-6 c_{2} e^{2 x} \\ \Rightarrow & 0 \end{aligned}y′=dxdy=c1ex+2c2e2xy′′=dx2d2y=c1ex+4c2e2x⇒⇒⇒⇒y=c1ex+c2e2x To verify the equation y′′−3y′+2y=0c1ex+4c2e2x−3(c1ex+2c2e2x)+2(c1ex+c2e2x)c1ex+4c2e2x−3c1e′x−6c2e2x+2c1ex+2c2e2x6c2e2x−6c2e2x0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment