The corresponding homogeneous differential equation is
y′′+y=0 Characteristic (auxiliary) equation
r2+1=0
r=±i The general solution of the homogeneous differential equation is
yh=c1cosx+c2sinx
y′=c1′cosx−c1sinx+c2′sinx+c2cosx If
c1′cosx+c2′sinx=0, then
y′′=−c1′sinx−c1cosx+c2′cosx−c2sinx Substitute
−c1′sinx−c1cosx+c2′cosx−c2sinx
+c1cosx+c2sinx=cosx1 We have
c1′cosx+c2′sinx=0,−c1′sinx+c2′cosx=cosx1
c1′=−cosxsinxc2′
cosxsin2xc2′+c2′cosx=cosx1
c1′=−cosxsinx
c2′=1 Integrate
c1=−∫cosxsinxdx=ln(∣cosx∣)+C1
c2=∫dx=x+C2 The general solution of the nonhomogeneous differential equation is
yh=ln(∣cosx∣)cosx+xsinx+C1cosx+C2sinx
Comments
Leave a comment