Answer to Question #295405 in Differential Equations for Moni

Question #295405

Solve by the method of variation of parameter y''+y=secx

1
Expert's answer
2022-02-09T17:58:02-0500

The corresponding homogeneous differential equation is


y+y=0y''+y=0

Characteristic (auxiliary) equation


r2+1=0r^2+1=0

r=±ir=\pm i

The general solution of the homogeneous differential equation is


yh=c1cosx+c2sinxy_h=c_1 \cos x+c_2\sin x

y=c1cosxc1sinx+c2sinx+c2cosxy'=c_1 '\cos x-c_1 \sin x+c_2'\sin x+c_2\cos x

If

c1cosx+c2sinx=0,c_1 '\cos x+c_2'\sin x=0,

then


y=c1sinxc1cosx+c2cosxc2sinxy''=-c_1'\sin x-c_1\cos x+c_2'\cos x-c_2\sin x

Substitute


c1sinxc1cosx+c2cosxc2sinx-c_1'\sin x-c_1\cos x+c_2'\cos x-c_2\sin x

+c1cosx+c2sinx=1cosx+c_1 \cos x+c_2\sin x=\dfrac{1}{\cos x}

We have


c1cosx+c2sinx=0,c_1 '\cos x+c_2'\sin x=0,c1sinx+c2cosx=1cosx-c_1'\sin x+c_2'\cos x=\dfrac{1}{\cos x}



c1=sinxcosxc2c_1'=-\dfrac{\sin x}{\cos x}c_2'

sin2xcosxc2+c2cosx=1cosx\dfrac{\sin^2 x}{\cos x}c_2'+c_2'\cos x=\dfrac{1}{\cos x}



c1=sinxcosxc_1'=-\dfrac{\sin x}{\cos x}

c2=1c_2'=1

Integrate


c1=sinxcosxdx=ln(cosx)+C1c_1=-\int \dfrac{\sin x}{\cos x}dx=\ln (|\cos x|)+C_1

c2=dx=x+C2c_2=\int dx=x+C_2

The general solution of the nonhomogeneous differential equation is


yh=ln(cosx)cosx+xsinx+C1cosx+C2sinxy_h=\ln (|\cos x|) \cos x+x\sin x+C_1\cos x+C_2\sin x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment