Given y ′ ′ + y = sec x y^{\prime \prime}+y=\sec x y ′′ + y = sec x .
The auxilary equation is r 2 + 1 = 0 r^{2}+1=0 r 2 + 1 = 0
Then, r 2 = ± i ⇒ r = − i , r = i . r^{2}=\pm i \Rightarrow r=-i, r=i . r 2 = ± i ⇒ r = − i , r = i .
Thus, the general solution is, y c = c 1 cos x + c 2 sin x . y_{c}=c_{1} \cos x+c_{2} \sin x . y c = c 1 cos x + c 2 sin x .
Here, y 1 ( x ) = cos x y_{1}(x)=\cos x y 1 ( x ) = cos x and y 2 ( x ) = sin x y_{2}(x)=\sin x y 2 ( x ) = sin x .
Then, y 1 ′ ( x ) = − sin x a n d y 2 ′ ( x ) = cos x . y_{1}^{\prime}(x)=-\sin x\ and\ y_{2}^{\prime}(x)=\cos x . y 1 ′ ( x ) = − sin x an d y 2 ′ ( x ) = cos x .
Find the Wronskian of y 1 ( x ) = cos x y_{1}(x)=\cos x y 1 ( x ) = cos x and y 2 ( x ) = sin x . y_{2}(x)=\sin x . y 2 ( x ) = sin x .
W = ∣ cos x sin x − sin x cos x ∣ = cos 2 x + sin 2 x = 1 \begin{aligned}
W &=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
&=\cos ^{2} x+\sin ^{2} x \\
&=1
\end{aligned} W = ∣ ∣ cos x − sin x sin x cos x ∣ ∣ = cos 2 x + sin 2 x = 1
Here, f ( x ) = sec x . f(x)=\sec x . f ( x ) = sec x .
u = − ∫ f ( x ) y 2 ( x ) W ( x ) d x and v = ∫ f ( x ) y 1 ( x ) W ( x ) d x u = − ∫ sec x sin x 1 d x and v = ∫ sec x cos x 1 d x \begin{aligned}
&u=-\int \frac{f(x) y_{2}(x)}{W(x)} d x \text { and } v=\int \frac{f(x) y_{1}(x)}{W(x)} d x \\
&u=-\int \frac{\sec x \sin x}{1} d x \quad \text { and } v=\int \frac{\sec x \cos x}{1} d x
\end{aligned} u = − ∫ W ( x ) f ( x ) y 2 ( x ) d x and v = ∫ W ( x ) f ( x ) y 1 ( x ) d x u = − ∫ 1 sec x sin x d x and v = ∫ 1 sec x cos x d x
u = − ∫ tan x d x and v = ∫ 1 d x u = ln ( cos x ) and v = x \begin{array}{ll}
u=-\int \tan x d x & \text { and } v=\int 1 d x \\
u=\ln (\cos x) & \text { and } v=x
\end{array} u = − ∫ tan x d x u = ln ( cos x ) and v = ∫ 1 d x and v = x
Thus, the particular solution is,
y p = cos x ln ( cos x ) + x sin x y_{p}=\cos x \ln (\cos x)+x \sin x y p = cos x ln ( cos x ) + x sin x
Therefore, the general solution of the given differential equation is,
y = y c + y p y = c 1 cos x + c 2 sin x + cos x ( ln ( cos x ) ) + x sin x \begin{aligned}
&y=y_{c}+y_{p} \\
&y=c_{1} \cos x+c_{2} \sin x+\cos x(\ln (\cos x))+x \sin x
\end{aligned} y = y c + y p y = c 1 cos x + c 2 sin x + cos x ( ln ( cos x )) + x sin x
Comments