Answer to Question #295402 in Differential Equations for Moni

Question #295402

Solve by the method of variation of of parameter y''+y=secx

1
Expert's answer
2022-02-10T13:50:37-0500

Solution:

Given y+y=secxy^{\prime \prime}+y=\sec x .

The auxilary equation is r2+1=0r^{2}+1=0

Then, r2=±ir=i,r=i.r^{2}=\pm i \Rightarrow r=-i, r=i .

Thus, the general solution is, yc=c1cosx+c2sinx.y_{c}=c_{1} \cos x+c_{2} \sin x .

Here, y1(x)=cosxy_{1}(x)=\cos x  and y2(x)=sinxy_{2}(x)=\sin x .

Then, y1(x)=sinx and y2(x)=cosx.y_{1}^{\prime}(x)=-\sin x\ and\ y_{2}^{\prime}(x)=\cos x .

Find the Wronskian of y1(x)=cosxy_{1}(x)=\cos x  and y2(x)=sinx.y_{2}(x)=\sin x .

W=cosxsinxsinxcosx=cos2x+sin2x=1\begin{aligned} W &=\left|\begin{array}{cc} \cos x & \sin x \\ -\sin x & \cos x \end{array}\right| \\ &=\cos ^{2} x+\sin ^{2} x \\ &=1 \end{aligned}

Here, f(x)=secx.f(x)=\sec x .

u=f(x)y2(x)W(x)dx and v=f(x)y1(x)W(x)dxu=secxsinx1dx and v=secxcosx1dx\begin{aligned} &u=-\int \frac{f(x) y_{2}(x)}{W(x)} d x \text { and } v=\int \frac{f(x) y_{1}(x)}{W(x)} d x \\ &u=-\int \frac{\sec x \sin x}{1} d x \quad \text { and } v=\int \frac{\sec x \cos x}{1} d x \end{aligned}

u=tanxdx and v=1dxu=ln(cosx) and v=x\begin{array}{ll} u=-\int \tan x d x & \text { and } v=\int 1 d x \\ u=\ln (\cos x) & \text { and } v=x \end{array}

Thus, the particular solution is,

yp=cosxln(cosx)+xsinxy_{p}=\cos x \ln (\cos x)+x \sin x

Therefore, the general solution of the given differential equation is,

y=yc+ypy=c1cosx+c2sinx+cosx(ln(cosx))+xsinx\begin{aligned} &y=y_{c}+y_{p} \\ &y=c_{1} \cos x+c_{2} \sin x+\cos x(\ln (\cos x))+x \sin x \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment