Given y′′+y=secx .
The auxilary equation is r2+1=0
Then, r2=±i⇒r=−i,r=i.
Thus, the general solution is, yc=c1cosx+c2sinx.
Here, y1(x)=cosx and y2(x)=sinx .
Then, y1′(x)=−sinx and y2′(x)=cosx.
Find the Wronskian of y1(x)=cosx and y2(x)=sinx.
W=∣∣cosx−sinxsinxcosx∣∣=cos2x+sin2x=1
Here, f(x)=secx.
u=−∫W(x)f(x)y2(x)dx and v=∫W(x)f(x)y1(x)dxu=−∫1secxsinxdx and v=∫1secxcosxdx
u=−∫tanxdxu=ln(cosx) and v=∫1dx and v=x
Thus, the particular solution is,
yp=cosxln(cosx)+xsinx
Therefore, the general solution of the given differential equation is,
y=yc+ypy=c1cosx+c2sinx+cosx(ln(cosx))+xsinx
Comments
Leave a comment