Solve by the method of variation of of parameter y''+y=secx
Given "y^{\\prime \\prime}+y=\\sec x" .
The auxilary equation is "r^{2}+1=0"
Then, "r^{2}=\\pm i \\Rightarrow r=-i, r=i ."
Thus, the general solution is, "y_{c}=c_{1} \\cos x+c_{2} \\sin x ."
Here, "y_{1}(x)=\\cos x" and "y_{2}(x)=\\sin x" .
Then, "y_{1}^{\\prime}(x)=-\\sin x\\ and\\ y_{2}^{\\prime}(x)=\\cos x ."
Find the Wronskian of "y_{1}(x)=\\cos x" and "y_{2}(x)=\\sin x ."
"\\begin{aligned}\n\nW &=\\left|\\begin{array}{cc}\n\n\\cos x & \\sin x \\\\\n\n-\\sin x & \\cos x\n\n\\end{array}\\right| \\\\\n\n&=\\cos ^{2} x+\\sin ^{2} x \\\\\n\n&=1\n\n\\end{aligned}"
Here, "f(x)=\\sec x ."
"\\begin{aligned}\n\n&u=-\\int \\frac{f(x) y_{2}(x)}{W(x)} d x \\text { and } v=\\int \\frac{f(x) y_{1}(x)}{W(x)} d x \\\\\n\n&u=-\\int \\frac{\\sec x \\sin x}{1} d x \\quad \\text { and } v=\\int \\frac{\\sec x \\cos x}{1} d x\n\n\\end{aligned}"
"\\begin{array}{ll}\n\nu=-\\int \\tan x d x & \\text { and } v=\\int 1 d x \\\\\n\nu=\\ln (\\cos x) & \\text { and } v=x\n\n\\end{array}"
Thus, the particular solution is,
"y_{p}=\\cos x \\ln (\\cos x)+x \\sin x"
Therefore, the general solution of the given differential equation is,
"\\begin{aligned}\n\n&y=y_{c}+y_{p} \\\\\n\n&y=c_{1} \\cos x+c_{2} \\sin x+\\cos x(\\ln (\\cos x))+x \\sin x\n\n\\end{aligned}"
Comments
Leave a comment