π¦β² β π¦ = π^2π₯π¦^3
A Bernoulli differential equation, "m=3, m\\not=0, m\\not=1"
Substitute "v=y^{1-3}=y^{-2}"
"y'-y=e^{2x}y^3"
"y^{-3}y'-y^{-2} = e^{2x}"
"-\\dfrac{1}{2}v'-v=e^{2x}"
"v'+2v=-2e^{2x}"
Integrating factor
"e^{2x}v'+2e^{2x}v=-2e^{4x}"
"d(e^{2x}v)=-2e^{4x}dx"
Integrate
"e^{2x}v=-\\dfrac{1}{2}e^{4x}+C"
"v=-\\dfrac{1}{2}e^{2x}+\\dfrac{1}{2}Ce^{-2x}"
Then
"y^2=\\dfrac{2e^{2x}}{C-e^{4x}}"
Comments
Leave a comment