Find the general solution of the lagrange's equation 2yzp+zxq=3xy?
2yzp+zxq=3xy2yzp+zxq=3xy2yzp+zxq=3xy
dx2yz=dyzx=dz3xy\frac{dx}{2yz}=\frac{dy}{zx}=\frac{dz}{3xy}2yzdx=zxdy=3xydz
3ydy=zdz3ydy=zdz3ydy=zdz
3y2−z2=c13y^2-z^2=c_13y2−z2=c1
xdx=2ydyxdx=2ydyxdx=2ydy
x2−2y2=c2x^2-2y^2=c_2x2−2y2=c2
F(c1,c2)=F(3y2−z2,x2−2y2)=0F(c_1,c_2)=F(3y^2-z^2,x^2-2y^2)=0F(c1,c2)=F(3y2−z2,x2−2y2)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments