Question #296317

Find the general solution of the lagrange's equation 2yzp+zxq=3xy?


1
Expert's answer
2022-02-14T17:42:00-0500

Solution:

2yzp+zxq=3xy2yzp+zxq=3xy

dx2yz=dyzx=dz3xy\frac{dx}{2yz}=\frac{dy}{zx}=\frac{dz}{3xy}

3ydy=zdz3ydy=zdz

3y2z2=c13y^2-z^2=c_1

xdx=2ydyxdx=2ydy

x22y2=c2x^2-2y^2=c_2

F(c1,c2)=F(3y2z2,x22y2)=0F(c_1,c_2)=F(3y^2-z^2,x^2-2y^2)=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS