The auxiliary equations are
2yzdx=zxdy=3xydz
Taking the first two ratios,
2yzdx2ydxx dx2x22x2−y2x2−2y2=zxdy=xdy=2y dy=22y2+2u=2u=u
Taking the last two ratios,
zxdyzdy3y dy23y23y2−z2=3xydz=3ydz=z dz=2z2+2v=v
The general solution of the equation is,
ϕ(u,v)ϕ(x2−2y2,3y2−z2)=0=0
Comments