Question #296324

Find the general solution of the Lagrange's equation 2yzp+zxq=3xy?


1
Expert's answer
2022-02-14T17:41:02-0500

The auxiliary equations are

dx2yz=dyzx=dz3xy\dfrac{dx}{2yz} = \dfrac{dy}{zx} = \dfrac{dz}{3xy}


Taking the first two ratios,

dx2yz=dyzxdx2y=dyxx dx=2y dyx22=2y22+u2x22y2=u2x22y2=u\begin{aligned} \dfrac{dx}{2yz} &= \dfrac{dy}{zx}\\ \dfrac{dx}{2y} &= \dfrac{dy}{x}\\ x~dx &= 2y~dy\\ \dfrac{x^2}{2} &= 2\dfrac{y^2}{2}+\dfrac{u}{2}\\ \dfrac{x^2}{2} - y^2 &= \dfrac{u}{2}\\ x^2 - 2y^2 &= u\\ \end{aligned}


Taking the last two ratios,

dyzx=dz3xydyz=dz3y3y dy=z dz3y22=z22+v23y2z2=v\begin{aligned} \dfrac{dy}{zx} &= \dfrac{dz}{3xy}\\ \dfrac{dy}{z} &= \dfrac{dz}{3y}\\ 3y~dy&= z~dz\\ \dfrac{3y^2}{2} &= \dfrac{z^2}{2} + \dfrac{v}{2}\\ 3y^2 -z^2&=v\\ \end{aligned}


The general solution of the equation is,

ϕ(u,v)=0ϕ(x22y2,3y2z2)=0\begin{aligned} \phi(u,v)&=0\\ \phi(x^2-2y^2,3y^2-z^2)&=0 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS