y′−y=e2xy3Substitute v=y1−3
v′=−2y−3y′
−21v′−v=e2x
v′+2v=−2e2x Integrating factor
μ(x)=e∫(2)dx=e2x
e2xv′+2e2xv=−2e4x
d(e2xv)=−2e4xdx Integrate
∫d(e2xv)=−∫2e4xdx
e2xv=−21e4x+C
v=−21e2x+21Ce−2x Then
y21=−21e2x+21Ce−2x
y2=Ce−2x−e2x2
y2=C−e4x2e2x
Comments