Question #288166

Solve for the general solution using method of undetermined coefficients D4-1y=e-x

1
Expert's answer
2022-01-17T18:36:39-0500

Find solution of the associated homogeneous equation:


(D41)y=0(D^4-1)y=0

Characteristic (auxiliary) equation is


r41=0r^4-1=0

(r1)(r+1)(ri)(r+i)=0(r-1)(r+1)(r-i)(r+i)=0

r1=1,r2=1,r3=i,r4=ir_1=-1, r_2=1, r_3=-i, r_4=i

The general solution of the associated homogeneous equation is


yh=c1ex+c2ex+c3cosx+c4sinxy_h=c_1e^x+c_2e^{-x}+c_3\cos x+c_4 \sin x

Find the particular solution of the non homogeneous differential equation


yp=Axexy_p=Axe^{-x}yp=AexAxexy_p'=Ae^{-x}-Axe^{-x}

yp=2Aex+Axexy_p''=-2Ae^{-x}+Axe^{-x}

yp=3AexAxexy_p'''=3Ae^{-x}-Axe^{-x}

yp=4Aex+Axexy_p''''=-4Ae^{-x}+Axe^{-x}

Substitute


4Aex+AxexAxex=ex-4Ae^{-x}+Axe^{-x}-Axe^{-x}=e^{-x}

A=14A=-\dfrac{1}{4}

The particular solution of the non homogeneous differential equation is


yp=14xexy_p=-\dfrac{1}{4}xe^{-x}

The general solution of the non homogeneous equation is


y=c1ex+c2ex+c3cosx+c4sinx14xexy=c_1e^x+c_2e^{-x}+c_3\cos x+c_4 \sin x-\dfrac{1}{4}xe^{-x}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS