Question #288161

using D' Alembert method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection f(x)=asin2nx


1
Expert's answer
2022-01-19T08:35:34-0500

Solution:

1-D wave equation can be written as:

2ut2=c22ux2\dfrac{\partial^{2} u}{\partial t^{2}}=c^{2} \dfrac{\partial^{2} u}{\partial x^{2}}

Here f(x)=asin2nxf(x)=a\sin^2nx

Using DD^{\prime} Alembert's method, the solution can be given as:

y(x,t)=12[f(x+ct)+f(xct)]=12[asin2n(x+ct)+asin2n(xct)]=a2[sin2(nx+nct)+sin2(nxnct)]y(x,t)=\dfrac12[f(x+ct)+f(x-ct)] \\=\dfrac12[a\sin^2n(x+ct)+a\sin^2n(x-ct)] \\=\dfrac a2[\sin^2(nx+nct)+\sin^2(nx-nct)]

=a2[1cos2(nx+nct)2+1cos2(nxnct)2]=\dfrac a2[\dfrac{1-\cos 2(nx+nct)}{2}+\dfrac{1-\cos 2(nx-nct)}{2}] [Using sin2t=1cos2t2\sin^2t=\dfrac{1-\cos 2t}2 ]

=a4[2cos2(nx+nct)cos2(nxnct)]=a4[22cos(2(nx+nct)2(nxnct)2)cos(2(nx+nct)+2(nxnct)2)]=\dfrac a4[{2-\cos 2(nx+nct)}-\cos 2(nx-nct)] \\=\dfrac a4[{2-2\cos (\dfrac{2(nx+nct)-2(nx-nct)}{2}}) \cos (\dfrac{2(nx+nct)+2(nx-nct)}{2})]

=a4[22cos(nct)cos(nx)]=a2[1cos(nct)cos(nx)]=\dfrac a4[2-2\cos (nct) \cos (nx)] \\=\dfrac a2[1-\cos (nct) \cos (nx)]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS