Answer to Question #278624 in Differential Equations for Ravi

Question #278624

(x^2D^2-xD+1)y=sin (logx)

1
Expert's answer
2021-12-14T13:39:32-0500

Given:   (x2D2     xD  +  1)y  =  sin(log(x))Let  z=log(x)  ,  such  that  x=ezD(D1)yDy  +  y  =  sin(z)(D22D+1)y  =  sin(z)A.E.  is    m22m + 1=0     (m1)(m1)=0   ,  m=1,1     (repeated  root)yc=(A+Bz)ez  ...................(1)Let  yp=1D22D+1sin(z)yp=1122D+1sin(z)  =12Dsin(z)  =cos(z)2yp=cos(z)2..........................(2)y=yc+ypy=(A+Bz)ez +cos(z)2y=(A+Blog(x))x +cos(log(x))2Given\mathrm{:}\ \ \ \left(x^{\mathrm{2}}D^{\mathrm{2}}\ \ \ -\ \ xD\ \ +\ \ \mathrm{1}\right)y\ \ =\ \ \mathrm{sin}\left(\mathrm{log}\left(x\right)\right) \\ Let\ \ z=\mathrm{log}\left(x\right)\ \ ,\ \ such\ \ that\ \ x=e^z \\ \\ D\left(D-\mathrm{1}\right)y-Dy\ \ +\ \ y\ \ =\ \ \mathrm{sin}\left(z\right) \\ \\ \left(D^{\mathrm{2}}-\mathrm{2}D+\mathrm{1}\right)y\ \ =\ \ \mathrm{sin}\left(z\right) \\ \\ A.E.\ \ is\ \ \ \ m^{\mathrm{2}}-\mathrm{2}m{}{}\ +\ \mathrm{1}=0\ \ \ \\ \\ \Rightarrow \ \ \left(m-\mathrm{1}\right)\left(m-\mathrm{1}\right)=0\ \ \ ,\ \ m=\mathrm{1,1}\ \ \ \ \ \left(repeated\ \ root\right) \\ \\ \Rightarrow y_c=\left(A+Bz\right)e^z\ \ ...................\left(\mathrm{1}\right) \\ \\ Let\ \ y_p=\frac{\mathrm{1}}{D^{\mathrm{2}}-\mathrm{2}D+\mathrm{1}}\mathrm{sin}\left(z\right) \\ \\ y_p=\frac{\mathrm{1}}{-{\mathrm{1}}^{\mathrm{2}}-\mathrm{2}D+\mathrm{1}}\mathrm{sin}\left(z\right)\ \ =\frac{\mathrm{1}}{-\mathrm{2}D}\mathrm{sin}\left(z\right)\ \ =\frac{\mathrm{cos}\left(z\right)}{\mathrm{2}} \\ \\ y_p=\frac{\mathrm{cos}\left(z\right)}{\mathrm{2}}..........................\left(\mathrm{2}\right) \\ \\ y=y_c+y_p \\ \\ y=\left(A+Bz\right)e^z\ +\frac{\mathrm{cos}\left(z\right)}{\mathrm{2}} \\ \\ y=\left(A+B\mathrm{log}\left(x\right)\right)x\ +\frac{\mathrm{cos}\left(\mathrm{log}\left(x\right)\right)}{\mathrm{2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment