Given: (x2D2 − xD + 1)y = sin(log(x))Let z=log(x) , such that x=ezD(D−1)y−Dy + y = sin(z)(D2−2D+1)y = sin(z)A.E. is m2−2m + 1=0 ⇒ (m−1)(m−1)=0 , m=1,1 (repeated root)⇒yc=(A+Bz)ez ...................(1)Let yp=D2−2D+11sin(z)yp=−12−2D+11sin(z) =−2D1sin(z) =2cos(z)yp=2cos(z)..........................(2)y=yc+ypy=(A+Bz)ez +2cos(z)y=(A+Blog(x))x +2cos(log(x))
Comments
Leave a comment