Question #277442

Find the solution of Bernoulli Equation


Given:


2xdy+y(y^2lnx-1)dx=0

1
Expert's answer
2021-12-09T14:12:02-0500

2xdy+y(y2lnx1)dx=02xdy+(y3lnxy)dx=02xdy+y(y^2lnx-1)dx=0\\ 2xdy+(y^3lnx-y)dx=0

Multiply by 1y3\frac{1}{y^3} both sides, we get

2xdyy3+(lnx1y2)dx=0\frac{2xdy}{y^3}+(lnx-\frac{1}{y^2})dx=0

 Equation in total differentials M(x,y)dy+N(x,y)dx=0 where M(x,y)=2xy3 and N(x,y)=ln(x)1y2 Check for full differential: M(x,y)x=N(x,y)y=2y3 Find F(x,y):dF(x,y)=Fydy+FxdxF(x,y)=N(x,y)dx=ln(x)1y2 dx=xln(x)xy2x+Cy(xln(x)xy2x)y=2xy3Cy=M(x,y)(xln(x)xy2x)ydy=0 dy=0F(x,y)=xln(x)xy2x+Cy=xln(x)xy2x\begin{aligned} &\text { Equation in total differentials } M(x, y) \mathrm{d} y+N(x, y) \mathrm{d} x=0 \\ &\text { where } M(x, y)=\frac{2 x}{y^{3}} \text { and } N(x, y)=\ln (x)-\frac{1}{y^{2}} \\ &\text { Check for full differential: } M(x, y)_{x}^{\prime}=N(x, y)_{y}^{\prime}=\frac{2}{y^{3}} \\ &\text { Find } F(x, y): \mathrm{d} F(x, y)=F_{y}^{\prime} \mathrm{d} y+F_{x}^{\prime} \mathrm{d} x \\ &F(x, y)=\int N(x, y) \mathrm{d} x=\int \ln (x)-\frac{1}{y^{2}} \mathrm{~d} x=x \ln (x)-\frac{x}{y^{2}}-x+C_{y} \\ &\qquad\left(x \ln (x)-\frac{x}{y^{2}}-x\right)_{y}^{\prime}=\frac{2 x}{y^{3}} \\ &\qquad \begin{array}{c} C_{y}=\int M(x, y)-\left(x \ln (x)-\frac{x}{y^{2}}-x\right)_{y}^{\prime} \mathrm{d} y=\int 0 \mathrm{~d} y=0 \\ F(x,y)= x \ln (x)-\frac{x}{y^{2}}-x+C_{y}=x \ln (x)-\frac{x}{y^{2}}-x \end{array} \end{aligned}

xln(x)xy2x=Cx \ln (x)-\frac{x}{y^{2}}-x=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS