2xdy+y(y2lnx−1)dx=02xdy+(y3lnx−y)dx=0
Multiply by y31 both sides, we get
y32xdy+(lnx−y21)dx=0
Equation in total differentials M(x,y)dy+N(x,y)dx=0 where M(x,y)=y32x and N(x,y)=ln(x)−y21 Check for full differential: M(x,y)x′=N(x,y)y′=y32 Find F(x,y):dF(x,y)=Fy′dy+Fx′dxF(x,y)=∫N(x,y)dx=∫ln(x)−y21 dx=xln(x)−y2x−x+Cy(xln(x)−y2x−x)y′=y32xCy=∫M(x,y)−(xln(x)−y2x−x)y′dy=∫0 dy=0F(x,y)=xln(x)−y2x−x+Cy=xln(x)−y2x−x
xln(x)−y2x−x=C
Comments