Question #278268

0.4i'+10i=40-sin35t


1
Expert's answer
2021-12-13T13:43:50-0500
0.4i+10i=40sin35t0.4i'+10i=40-\sin35ti+25i=1002.5sin35ti'+25i=100-2.5\sin35t

Integrating factor


μ(t)=e25dt=e25t\mu(t)=e^{\int25dt}=e^{25t}

e25t(i+25i)=100e25t2.5e25tsin35te^{25t}(i'+25i)=100e^{25t}-2.5e^{25t}\sin35t

d(e25ti)=(100e25t2.5e25tsin35t)dtd(e^{25t}i)=(100e^{25t}-2.5e^{25t}\sin35t)dt

Integrate


d(e25ti)=(100e25t2.5e25tsin35t)dt\int d(e^{25t}i) =\int (100e^{25t}-2.5e^{25t}\sin35t)dt

I1=e25tsin35tdtI_1=\int e^{25t}\sin35tdt

u=sin35t,du=35cos35tdtu=\sin35t, du=35\cos35tdt

dv=e25tdt,v=e25tdt=0.04e25tdv=e^{25t}dt, v=\int e^{25t}dt=0.04e^{25t}

I1=e25tsin35tdtI_1=\int e^{25t}\sin35tdt

=0.04e25tsin35t1.4e25tcos35tdt=0.04e^{25t}\sin35t-1.4\int e^{25t}\cos35tdt

e25tcos35tdt\int e^{25t}\cos35tdt

u=cos35t,du=35sin35tdtu=\cos35t, du=-35\sin35tdt

dv=e25tdt,v=e25tdt=0.04e25tdv=e^{25t}dt, v=\int e^{25t}dt=0.04e^{25t}

e25tcos35tdt=0.04e25tcos35t\int e^{25t}\cos35tdt=0.04e^{25t}\cos35t+1.4e25tsin35tdt+1.4\int e^{25t}\sin35tdt

e25tsin35tdt=0.04e25tsin35t\int e^{25t}\sin35tdt=0.04e^{25t}\sin35t-

0.056e25tcos35t1.96e25tsin35tdt-0.056e^{25t}\cos35t-1.96\int e^{25t}\sin35tdt

2.96e25tsin35tdt=0.04e25tsin35t2.96\int e^{25t}\sin35tdt=0.04e^{25t}\sin35t

0.056e25tcos35t-0.056e^{25t}\cos35t

e25tsin35tdt=2148e25tsin35t2.8148e25tcos35t\int e^{25t}\sin35tdt=\dfrac{2}{148}e^{25t}\sin35t-\dfrac{2.8}{148}e^{25t}\cos35t

e25ti=4e25t5148e25tsin35t+7148e25tcos35t+Ce^{25t}i=4e^{25t}-\dfrac{5}{148}e^{25t}\sin35t+\dfrac{7}{148}e^{25t}\cos35t+C

i=45148sin35t+7148cos35t+Ce25ti=4-\dfrac{5}{148}\sin35t+\dfrac{7}{148}\cos35t+Ce^{-25t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS