Question #278482

An electromotive force 120, 0<t<20, E(t) = (o, t >20, is applied to an LR-series circuit in which the inductance is 20 henries and the resistance is 2 ohms. Find the current it) if i(0)-0.

1
Expert's answer
2021-12-14T07:49:49-0500

For a series circuit containing only a resistor and an inductorKirchhoff’s second law states that the sum of the voltage  drop across the inductor Ldidt and the voltage drop across the resistor (iR) is the same as the impressed voltage on the circuit E(t)Ldidt+Ri=E(t)L=0.1H and R=50Ω and E=20V0.1didt+50i=20didt+500i=200 linear differential Equation The integrating factor is e500 dt=e500ti e500t=200e500tdt=25e500t+ci(t)=25+c e500t Applying the initial condition i(0)=0 0=25+c e0c=25 Substitute in i(t) The current i(t) if i(0) = 0  is i(t)=2525e500t   (1)limti(t)=limt(2525e500t)=2525(0)=25       (2)\text{For a series circuit containing only a resistor and an inductor} \\[1 em] \text{Kirchhoff's second law states that the sum of the voltage } \\[1 em] \text{ drop across the inductor } L \frac{d i}{d t} \\[1 em] \text{ and the voltage drop across the resistor}~(iR) \\[1 em] \text{ is the same as the impressed voltage on the circuit } E(t) \\[1 em] L \frac{d i}{d t}+R i=E(t) \\[1 em] \because \quad L=0.1 \mathrm{H} \quad \text { and } \quad R=50 \Omega \quad \text { and } \quad E=20 \mathrm{V} \\[1 em] \therefore \quad 0.1 \frac{d i}{d t}+50 i=20\quad \\[1 em] \therefore \frac{d i}{d t}+500 i=200\\[1 em] \text{ linear differential Equation} \\[1 em] \text{ The integrating factor is}~ e^{\int 500~ d t}=e^{500 t}\\[1 em] \therefore i ~e^{500 t} =\int 200 e^{500 t} d t = \frac{2}{5} e^{500 t}+c \\[1 em] \therefore i(t) = \frac{2}{5} +c~ e^{-500 t} \\[1 em] \text{ Applying the initial condition i(0)=0 } \\[1 em] 0=\frac{2}{5}+c~e^0 \quad \rightarrow \quad c=-\frac{2}{5} \\[1 em] \text{ Substitute in i(t)} \\[1 em] \therefore \text{ The current i(t) if i(0) = 0 ~is }i(t)=\frac{2}{5}-\frac{2}{5} e^{-500 t} ~~~(1) \\[1 em] \therefore \lim _{t \rightarrow \infty} i(t)=\lim _{t \rightarrow \infty}\left(\frac{2}{5}-\frac{2}{5} e^{-500 t}\right) =\frac{2}{5} -\frac{2}{5} (0)=\frac{2}{5}~~~~~~~(2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS