Question #278314

y''+2y'=0 find two power series of the given differential equation about ordinary point x=0.Compare the series of the solution with the solution of differential obtained using the method section 4.3.Try to explain any differences between the two forms of the solution.


1
Expert's answer
2021-12-13T12:38:22-0500

Consider the differential equation,

yy=0 Let y=n=0cnxn,y^{\prime \prime}-y^{\prime}=0\ Let\ y=\sum_{n=0}^{\infty} c_{n} x^{n},

theny=n=1ncnxn1andy=n=2n(n1)cnxn2then y^{\prime}=\sum_{n=1}^{\infty} n c_{n} x^{n-1} and y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}

Substituting in the differential equation we get

n=2n(n1)cnxn2n=1ncnxn1=0n=2n(n1)cnxn2k=n2n=1ncnxn1k=n1=0k=0(k+2)(k+1)ck+2xkk=0(k+1)ck+1xk=0k=0[(k+2)(k+1)ck+2(k+1)ck+1]xk=0\begin{aligned} \sum_{n=2}^{\infty} & n(n-1) c_{n} x^{n-2}-\sum_{n=1}^{\infty} n c_{n} x^{n-1}=0 \\ \Rightarrow & \sum_{n=2}^{\infty} \underbrace{n(n-1) c_{n} x^{n-2}}_{k=n-2}-\sum_{n=1}^{\infty} \underbrace{n c_{n} x^{n-1}}_{k=n-1}=0 \\ \sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}=0 \\ & \sum_{k=0}^{\infty}\left[(k+2)(k+1) c_{k+2}-(k+1) c_{k+1}\right] x^{k}=0 \end{aligned}  

Compare the coefficients on each side to get,

 (k+2)(k+1)ck+2(k+1)ck+1=0,k=0,1,2,ck+2=1k+2ck+1,k=0,1,2,\begin{aligned} (k+2)(k+1) c_{k+2}-(k+1) c_{k+1} &=0, k=0,1,2, \ldots \\ c_{k+2} &=\frac{1}{k+2} c_{k+1}, k=0,1,2, \ldots \end{aligned}

From the relation ck+2=1k+2ck+1,k=0,1,2,c_{k+2}=\frac{1}{k+2} c_{k+1}, k=0,1,2, \ldots get,

 c2=10+2c0+1=12c1c3=11+2c1+1=13(12c1)=16c1c4=12+2c2+1=14(16c1)=124c1\begin{aligned} c_{2} &=\frac{1}{0+2} c_{0+1} \\ &=\frac{1}{2} c_{1} \\ c_{3} &=\frac{1}{1+2} c_{1+1} \\ &=\frac{1}{3}\left(\frac{1}{2} c_{1}\right) \\ &=\frac{1}{6} c_{1} \\ c_{4} &=\frac{1}{2+2} c_{2+1} \\ &=\frac{1}{4}\left(\frac{1}{6} c_{1}\right) \\ &=\frac{1}{24} c_{1} \end{aligned}

Rewrite the solution y2y_{2} as,

 y2=x+12!x2+13!x3+14!x4+=1+1+x+12!x2+13!x3+14!x4+=1+(1+x+12!x2+13!x3+14!x4+)=1+n=0xnn!=1+ex\begin{aligned} y_{2} &=x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\frac{1}{4 !} x^{4}+\cdots \\ &=-1+1+x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\frac{1}{4 !} x^{4}+\cdots \\ &=-1+\left(1+x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+\frac{1}{4 !} x^{4}+\cdots\right) \\ &=-1+\sum_{n=0}^{\infty} \frac{x^{n}}{n !} \\ &=-1+e^{x} \end{aligned}

Therefore, the two solutions are y1=1,y2=1+exy_{1}=1, y_{2}=-1+e^{x}

Finally general solution to the given differential equation is,

y(x)=c01+c1(ex1)y(x)=c_{0} \cdot 1+c_{1} \cdot\left(e^{x}-1\right)

 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS