Question #255119

Find the series solution of the differential equation

x2(𝑥+2)𝑦′′−𝑥𝑦′+(1+𝑥)𝑦=0.



1
Expert's answer
2021-10-25T03:18:27-0400

Given

x2(x+2)yxy+(1+x)y=0x^{2}(x+2)y''-xy'+(1+x)y=0 this is equation (i)

Let y=n=0Cnxny=\displaystyle\sum_{n=0}^{\infty}C_nx^n

Then y=n=1Cnnxn1y'=\displaystyle\sum_{n=1}^{\infty}C_nnx^{n-1}

And y=n=2Cnn(n1)xn2y''=\displaystyle\sum_{n=2}^{\infty}C_nn(n-1)x^{n-2}

Substituting the above into our equation (i)

x2(x+1)n=2Cnn(n1)xn2xn=1Cnnxn1x^{2}(x+1)\displaystyle\sum_{n=2}^{\infty}C_nn(n-1)x^{n-2}-x\displaystyle\sum_{n=1}^{\infty}C_nnx^{n-1}

+(1+x)x=0Cnxn=0+(1+x)\displaystyle\sum_{x=0}^{\infty}C_nx^n=0

n=2Cnn(n1)xn+1n=1Cnnxn+n=0Cnxn+n=0Cnxn+1=0\displaystyle\sum_{n=2}^{\infty}C_nn(n-1)x^{n+1}-\displaystyle\sum_{n=1}^{\infty}C_nnx^{n}+\displaystyle\sum_{n=0}^{\infty}C_nx^n+\displaystyle\sum_{n=0}^{\infty}C_nx^{n+1}=0

n=3Cn1(n1)(n2)xn+n=1Cnnxn+n=0Cnxn\displaystyle\sum_{n=3}^{\infty}C_{n-1}(n-1)(n-2)x^{n}+\displaystyle\sum_{n=1}^{\infty}C_nnx^{n}+\displaystyle\sum_{n=0}^{\infty}C_nx^n

+n=1Cn1xn=0+\displaystyle\sum_{n=1}^{\infty}C_{n-1}x^{n}=0

n=3Cn1(n1)(n2)xnC1x2C2x2n=3Cnnxn+C0\displaystyle\sum_{n=3}^{\infty}C_{n-1}(n-1)(n-2)x^{n}-C_1x-2C_2x^{2}-\displaystyle\sum_{n=3}^{\infty}C_nnx^{n}+C_0

+C1x+C2x2+n=3Cnxn+C0x+C1x2+n=3Cn1xn=0+C_1x+C_2x^{2}+\displaystyle\sum_{n=3}^{\infty}C_nx^n+C_0x+C_1x^{2}+\displaystyle\sum_{n=3}^{\infty}C_{n-1}x^n=0

C0+C0x+(2C2+C2+C1)x2+[n=3(n1)(n2)Cn1C_0+C_0x+(-2C_2+C_2+C_1)x^{2}+[\displaystyle\sum_{n=3}^{\infty}(n-1)(n-2)C_{n-1}

nCn+Cnxn+Cn1]xn=0-nC_n+C_nx^n+C_{n-1}]x^n=0

Equating each coefficient by 0

C0=0C_0=0

2C2+C2+C1=0-2C_2+C_2+C_1=0

C2+C1=0-C_2+C_1=0

C1=C2C_1=C_2

For n>2n>2 ,

(n1)(n2)Cn1nCn+Cn+Cn1=0(n-1)(n-2)C_{n-1}-nC_n+C_n+C_{n-1}=0

[(n1)(n2)+1]Cn1+(1n)Cn=0[(n-1)(n-2)+1]C_{n-1}+(1-n)C_n=0

Cn=(n1)(n2)+1(n1)Cn1C_n=\frac{(n-1)(n-2)+1}{(n-1)}C_{n-1}

Cn=[(n2)+1(n1)]Cn1C_n=[(n-2)+\frac{1}{(n-1)}]C_{n-1}

C3=(1+12)C2C_3=(1+\frac{1}{2})C_2

C3=32C2C_3=\frac{3}{2}C_2

C4=(2+13)C3C_4=(2+\frac{1}{3})C_3

C4=73C3C_4=\frac{7}{3}C_3

C5=(3+14)C4C_5=(3+\frac{1}{4})C_4

C5=134C4C_5=\frac{13}{4}C_4

C6=(4+15)C5C_6=(4+\frac{1}{5})C_5

C6=215C5C_6=\frac{21}{5}C_5

Therefore, the series solution of the differential equation is

y=32C2x3+73C3x4+134C4x5+215C5x6+...y=\frac{3}{2}C_2x^3+\frac{7}{3}C_3x^4+\frac{13}{4}C_4x^5+\frac{21}{5}C_5x^6+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS