Given
x2(x+2)y′′−xy′+(1+x)y=0 this is equation (i)
Let y=n=0∑∞Cnxn
Then y′=n=1∑∞Cnnxn−1
And y′′=n=2∑∞Cnn(n−1)xn−2
Substituting the above into our equation (i)
x2(x+1)n=2∑∞Cnn(n−1)xn−2−xn=1∑∞Cnnxn−1
+(1+x)x=0∑∞Cnxn=0
n=2∑∞Cnn(n−1)xn+1−n=1∑∞Cnnxn+n=0∑∞Cnxn+n=0∑∞Cnxn+1=0
n=3∑∞Cn−1(n−1)(n−2)xn+n=1∑∞Cnnxn+n=0∑∞Cnxn
+n=1∑∞Cn−1xn=0
n=3∑∞Cn−1(n−1)(n−2)xn−C1x−2C2x2−n=3∑∞Cnnxn+C0
+C1x+C2x2+n=3∑∞Cnxn+C0x+C1x2+n=3∑∞Cn−1xn=0
C0+C0x+(−2C2+C2+C1)x2+[n=3∑∞(n−1)(n−2)Cn−1
−nCn+Cnxn+Cn−1]xn=0
Equating each coefficient by 0
C0=0
−2C2+C2+C1=0
−C2+C1=0
C1=C2
For n>2 ,
(n−1)(n−2)Cn−1−nCn+Cn+Cn−1=0
[(n−1)(n−2)+1]Cn−1+(1−n)Cn=0
Cn=(n−1)(n−1)(n−2)+1Cn−1
Cn=[(n−2)+(n−1)1]Cn−1
C3=(1+21)C2
C3=23C2
C4=(2+31)C3
C4=37C3
C5=(3+41)C4
C5=413C4
C6=(4+51)C5
C6=521C5
Therefore, the series solution of the differential equation is
y=23C2x3+37C3x4+413C4x5+521C5x6+...
Comments