Question #254792

y¨ + 4y´ + 4y=(3 + x)e-2x , y(0)=2, y´(0)=5


1
Expert's answer
2021-10-22T11:06:12-0400

Let us solve the differential equation y+4y+4y=(3+x)e2x, y(0)=2,y(0)=5y'' + 4y' + 4y=(3 + x)e^{-2x} ,\ y(0)=2, y'(0)=5.

The characteristic equation k2+4k+4=0k^2+4k+4=0 is equivalent to (k+2)2=0,(k+2)^2=0, and hence has the solutions k1=k2=2.k_1=k_2=-2. Therefore, the general solution of the differential equation y+4y+4y=(3+x)e2xy'' + 4y' + 4y=(3 + x)e^{-2x} is y=(C1+C2x)e2x+yp,y=(C_1+C_2x)e^{-2x}+y_p, where yp=x2(ax+b)e2x=(ax3+bx2)e2x.y_p=x^2(ax+b)e^{-2x}=(ax^3+bx^2)e^{-2x}.

It follows that

yp=(3ax2+2bx)e2x2(ax3+bx2)e2x=(3ax2+2bx2ax32bx2)e2x,y_p'=(3ax^2+2bx)e^{-2x}-2(ax^3+bx^2)e^{-2x}\\=(3ax^2+2bx-2ax^3-2bx^2)e^{-2x},

y=(6ax+2b6ax24bx)e2x2(3ax2+2bx2ax32bx2)e2x=(6ax+2b6ax24bx6ax24bx+4ax3+4bx2)e2x.y''=(6ax+2b-6ax^2-4bx)e^{-2x}-2(3ax^2+2bx-2ax^3-2bx^2)e^{-2x}\\= (6ax+2b-6ax^2-4bx-6ax^2-4bx+4ax^3+4bx^2)e^{-2x}.

Then we have

(6ax+2b6ax24bx6ax24bx+4ax3+4bx2)e2x+4(3ax2+2bx2ax32bx2)e2x+4(ax3+bx2)e2x=(3+x)e2x,(6ax+2b-6ax^2-4bx-6ax^2-4bx+4ax^3+4bx^2)e^{-2x}+4(3ax^2+2bx-2ax^3-2bx^2)e^{-2x}+4(ax^3+bx^2)e^{-2x}= (3 + x)e^{-2x},

and hence 6ax+2b=3+x.6ax+2b=3 + x. We conclude that 6a=1, 2b=3,6a=1,\ 2b=3, and thus a=16, b=32.a=\frac{1}6,\ b=\frac{3}2.

Consequently, the general solution is of the form

y=(C1+C2x)e2x+(16x3+32x2)e2x=(C1+C2x+32x2+16x3)e2x.y=(C_1+C_2x)e^{-2x}+(\frac{1}6x^3+\frac{3}2x^2)e^{-2x}=(C_1+C_2x+\frac{3}2x^2+\frac{1}6x^3)e^{-2x}.

Then 2=y(0)=C1.2=y(0)=C_1.

It follows that y=(C2+3x+12x2)e2x2(C1+C2x+32x2+16x3)e2x,y'=(C_2+3x+\frac{1}2x^2)e^{-2x}-2(C_1+C_2x+\frac{3}2x^2+\frac{1}6x^3)e^{-2x}, and hence 5=y(0)=C22C1=C24.5=y'(0)=C_2-2C_1=C_2-4. Then C2=9.C_2=9.


We conclude that the solution of the differential equation y+4y+4y=(3+x)e2x, y(0)=2,y(0)=5y'' + 4y' + 4y=(3 + x)e^{-2x} ,\ y(0)=2, y'(0)=5 is

y=(2+9x+32x2+16x3)e2x.y=(2+9x+\frac{3}2x^2+\frac{1}6x^3)e^{-2x}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS