xy2 dx + zx2 dy − x2y2 dz =0y2d(x2)2 + zx2 dy− x2y2 dz =0∫(y2d(x2)2)+ ∫zx2dy − ∫(x2y2 dz )=0(x2y2)2+yzx2−x2y2 z = Cxy^{\mathrm{2}}\ dx\ +\ \ zx^{\mathrm{2}}\ dy\ \ \ -\ \ x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ =0 \\ \frac{y^{\mathrm{2}}d\left(x^{\mathrm{2}}\right)}{\mathrm{2}}\ \ +\ zx^{\mathrm{2}}\ dy-\ x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ =0 \\ \\ \int{\left(\frac{y^{\mathrm{2}}d\left(x^{\mathrm{2}}\right)}{\mathrm{2}}\right)}{}{}+\ \ \int{zx^{\mathrm{2}}dy{}{}{}{}\ \ -\ \ \ \int{\left(x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ \right)=0}} \\ \\ \frac{\left(x^{\mathrm{2}}y^{\mathrm{2}}\right)}{\mathrm{2}}+yzx^{\mathrm{2}}{}-{}{}x^{\mathrm{2}}y^{\mathrm{2}}\ z{}{}{}\ \ =\ \ Cxy2 dx + zx2 dy − x2y2 dz =02y2d(x2) + zx2 dy− x2y2 dz =0∫(2y2d(x2))+ ∫zx2dy − ∫(x2y2 dz )=02(x2y2)+yzx2−x2y2 z = C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment