Answer to Question #254766 in Differential Equations for Zode

Question #254766
xy^2dx+zx^2dy-x^2y^2dz= determine the following equation are integral
1
Expert's answer
2021-12-13T05:09:18-0500

xy2 dx +  zx2 dy     x2y2 dz =0y2d(x2)2  + zx2 dy x2y2 dz =0(y2d(x2)2)+  zx2dy     (x2y2 dz )=0(x2y2)2+yzx2x2y2 z  =  Cxy^{\mathrm{2}}\ dx\ +\ \ zx^{\mathrm{2}}\ dy\ \ \ -\ \ x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ =0 \\ \frac{y^{\mathrm{2}}d\left(x^{\mathrm{2}}\right)}{\mathrm{2}}\ \ +\ zx^{\mathrm{2}}\ dy-\ x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ =0 \\ \\ \int{\left(\frac{y^{\mathrm{2}}d\left(x^{\mathrm{2}}\right)}{\mathrm{2}}\right)}{}{}+\ \ \int{zx^{\mathrm{2}}dy{}{}{}{}\ \ -\ \ \ \int{\left(x^{\mathrm{2}}y^{\mathrm{2}}\ dz\ \right)=0}} \\ \\ \frac{\left(x^{\mathrm{2}}y^{\mathrm{2}}\right)}{\mathrm{2}}+yzx^{\mathrm{2}}{}-{}{}x^{\mathrm{2}}y^{\mathrm{2}}\ z{}{}{}\ \ =\ \ C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment