Question #253695
  1. the differential equation(1+2xx )dy/dxdy/dx +xyxy =0 , determine the particular solution when yy (0)=2, express y interms of xx .
  2. show that dy/dx=dy/dx=e^(y-x) is seperable and find the general solution expessing y in terms of x
  3. use the U substitution y=txy=tx to solve (x62x5+2x4y3+4x2y)dx+(xy24x3)dy=0(x^6-2x^5+2x^4-y^3+4x^2y)dx+(xy^2-4x^3)dy=0
1
Expert's answer
2021-10-20T17:58:55-0400

2.

dy/ey=dx/exdy/e^y=dx/e^x

ey=ex+c-e^{-y}=-e^{-x}+c

y=ln(exc)y=-ln(e^{-x}-c)


1.

dy/y=xdx/(1+x2)dy/y=-xdx/(1+x^2)

lny=ln(1+x2)/2+lnclny=-ln(1+x^2)/2+lnc

y=c/1+x2y=c/\sqrt{1+x^2}


y(0)=c=2y(0)=c=2


y(x)=2/1+x2y(x)=2/\sqrt{1+x^2}


3.

y=txy=tx

(x32x2+2xt3+4t)dx+(t24)(xdt+tdx)=0(x^3-2x^2+2x-t^3+4t)dx+(t^2-4)(xdt+tdx)=0

(x32x2+2x)dx+(t24)xdt=0(x^3-2x^2+2x)dx+(t^2-4)xdt=0

(x22x+2)dx=(t24)dt\int(x^2-2x+2)dx=-\int(t^2-4)dt


t3/34t=x3/3+x22x+ct^3/3-4t=-x^3/3+x^2-2x+c


y3/(3x3)4y/x=x3/3+x22x+cy^3/(3x^3)-4y/x=-x^3/3+x^2-2x+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS