Question #253696

solve the differential equation to the indicated inintial conditions; y+4y=0y+4y=0 y(0)=4y(0)=4 y(0)=6y(0)=6


1
Expert's answer
2021-10-20T18:28:03-0400

Here, question is incorrect as y+4y=0y+4y=0 is not a differential equation also y(0)=4,y(0)=6y(0)=4, y(0)=6

is not possible as we are getting two different yy values at x=0.x=0.

Let us take the differential equation as y+4y=0y'+4y=0 and the boundary condition as y(0)=4.y(0)=4.

y+4y=0dydx+4y=0dydx=4ydyy=4dxy'+4y=0 \\\Rightarrow \frac{dy}{dx}+4y=0\\ \Rightarrow \frac{dy}{dx}=-4y\\\Rightarrow \frac{dy}{y}=-4dx

Integrating both sides, we get

dyy=(4)dxln y=4x+c ...(1)\int \frac{dy}{y}=\int(-4)dx \\\Rightarrow ln \ y = -4x+c \ ...(1)

Now, using boundary condition as y(0)=4

ln 4=4×0+cc=ln 4ln \ 4=-4\times0+c\Rightarrow c=ln \ 4

From equation (1), we get

ln y=4x+ln 44x=ln 4ln y4x=ln (4y)e4x=4yy.e4x=4ln \ y = -4x+ln \ 4 \\\Rightarrow 4x=ln\ 4 - ln\ y \\\Rightarrow 4x=ln\ (\frac{4}{y}) \\\Rightarrow e^{4x}=\frac{4}{y} \\\Rightarrow y.e^{4x}=4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS