Given partial differential equation is,
(D3−2D2D′)z=3x2y
Let D′=1 then auxiliary equation,
D3−2D2=0
m3−2m2=0⟹m2(m−2)=0
m=0,0,2
Then
C.F.,z=ϕ(y)+xϕ(y)+ϕ(y+2x)
P.I. (D3−2D2D′)13x2y=3(D3−2D2D′)1x2y=3D3(1−D2D′)1x2y
Expanding biomomially,
=D33(1−D2D′)−1x2y=D33(1+D2D′+....)x2y
=D33[x2y+D2x2]=D33[x2y+32x3]=D33x2y+D32x3
=20x5y+60x6
Complete solution will be,
z=ϕ(y)+xϕ(y)+ϕ(y+2x)+20x5y+60x6
Comments