Question #254689

(D3-2D2D')z=3x2y


1
Expert's answer
2021-10-22T01:04:35-0400

Given partial differential equation is,

(D32D2D)z=3x2y(D^3-2D^2D')z=3x^2y


Let D=1D' = 1 then auxiliary equation,

D32D2=0D^3-2D^2 = 0

m32m2=0    m2(m2)=0m^3-2m^2 = 0 \implies m^2(m-2) = 0

m=0,0,2m = 0, 0, 2

Then

C.F.,z=ϕ(y)+xϕ(y)+ϕ(y+2x)C.F. , z = \phi(y)+x\phi(y)+\phi(y+2x)


P.I. 1(D32D2D)3x2y=31(D32D2D)x2y=31D3(12DD)x2y\frac{1}{(D^3-2D^2D')}3x^2y = 3\frac{1}{(D^3-2D^2D')}x^2y = 3\frac{1}{D^3(1-\frac{2D'}{D})}x^2y


Expanding biomomially,


=3D3(12DD)1x2y=3D3(1+2DD+....)x2y= \frac{3}{D^3}(1-\frac{2D'}{D})^{-1}x^2y = \frac{3}{D^3}(1+\frac{2D'}{D}+....)x^2y


=3D3[x2y+2Dx2]=3D3[x2y+2x33]=3x2yD3+2x3D3= \frac{3}{D^3}[x^2y+\frac{2}{D}x^2]= \frac{3}{D^3}[x^2y+\frac{2x^3}{3}] = \frac{3x^2y}{D^3}+\frac{2x^3}{D^3}


=x5y20+x660= \frac{x^5y}{20}+\frac{x^6}{60}



Complete solution will be,

z=ϕ(y)+xϕ(y)+ϕ(y+2x)+x5y20+x660z = \phi(y)+x\phi(y)+\phi(y+2x) + \frac{x^5y}{20}+\frac{x^6}{60}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS