(sin(x))′=cos(x)
(cos(x))′=−sin(x)
(ln(x))′=x1
(x)′=21⋅x1
(ex)′=ex
(tan(x))′=cos2(x)1
(C⋅x)′=C
Let, h(x)=f(g(x)),h′(x)=f′(x)⋅g′(x) (*)
Use(*),
(sec(x))′=(cos(x)1)′=(−cos2(x)1)⋅(−sin(x))=cos2(x)sin(x) ,
where f(x)=cos(x)1,g(x)=cos(x) ).
-------------------------------------------------------------------------------------------------------------------
1) (sin(x)⋅ln(5x))′.
(f⋅g)′=f′g+fg′ (1)
Use (1),
(sin(x)⋅ln(5x))′=(sin(x))′⋅ln(5x)+sin(x)⋅(ln(5x))′=
=cos(x)⋅ln(5x)+sin(x)⋅5x1⋅5=cos(x)⋅ln(5x)+xsin(x).
-------------------------------------------------------------------------------------------------------------------
2) (cos(x))′.
Let p(x)=f(g(h(x))), then p′(x)=f′(x)⋅g′(x)⋅h′(x).
f(x)=u,u=cos(x)⟹f′(x)=21⋅u1=21⋅cos(x)1,
g(x)=cos(v),v=x⟹g′(x)=−sin(v)=−sin(x),
h(x)=x,h′(x)=21⋅x1.
(cos(x))′=21⋅cos(x)1⋅(−sin(x))⋅21⋅x1=
=−41⋅x⋅cos(x)sin(x).
-------------------------------------------------------------------------------------------------------------------
3) (eln(tan(5x)))′.
Let p(x)=s(f(g(h(x))))⟹p′(x)=s′(x)⋅f′(x)⋅g′(x)⋅h′(x).
s(x)=eu,u=ln(tan(5⋅x))⟹s′(x)=eu=eln(tan(5⋅x)),
f(x)=ln(v),v=tan(5⋅x)⟹f′(x)=v1=tan(5⋅x)1,
g(x)=tan(w),w=5⋅x⟹g′(x)=cos2(w)1=cos2(5⋅x)1,
h(x)=5⋅x⟹h′(x)=5.
(eln(tan(5x)))′=eln(tan(5x))⋅tan(5x)1⋅cos2(5x)1⋅5=
=5⋅tan(5x)⋅tan(5x)1⋅cos2(5x)1=5sec2(x).
-------------------------------------------------------------------------------------------------------------------
4) (sin(2(ln(sec(x)))))′.
(sin(2(ln(sec(x)))))′=cos(2(ln(sec(x)))))⋅2⋅sec(x)1⋅cos2(x)sin(x)=
=2⋅cos(2(ln(sec(x)))))⋅tan(x).
-------------------------------------------------------------------------------------------------------------------
5) (ln(tan(x)))′=tan(x)1⋅cos2(x)1=sin(x)1=csc(x).
Comments