( sin ( x ) ) ′ = cos ( x ) (\sin(x))'=\cos(x) ( sin ( x ) ) ′ = cos ( x )
( cos ( x ) ) ′ = − sin ( x ) (\cos(x))'=-\sin(x) ( cos ( x ) ) ′ = − sin ( x )
( ln ( x ) ) ′ = 1 x (\ln(x))'=\frac{1}{x} ( ln ( x ) ) ′ = x 1
( x ) ′ = 1 2 ⋅ 1 x (\sqrt{x})'=\frac{1}{2}\cdot\frac{1}{\sqrt{x}} ( x ) ′ = 2 1 ⋅ x 1
( e x ) ′ = e x (e^{x})'=e^{x} ( e x ) ′ = e x
( tan ( x ) ) ′ = 1 cos 2 ( x ) (\tan(x))'=\frac{1}{\cos^2(x)} ( tan ( x ) ) ′ = c o s 2 ( x ) 1
( C ⋅ x ) ′ = C (C\cdot x)'=C ( C ⋅ x ) ′ = C
Let, h ( x ) = f ( g ( x ) ) , h ′ ( x ) = f ′ ( x ) ⋅ g ′ ( x ) h(x)=f(g(x)), h'(x)=f'(x)\cdot g'(x) h ( x ) = f ( g ( x )) , h ′ ( x ) = f ′ ( x ) ⋅ g ′ ( x ) (*)
Use(*),
( sec ( x ) ) ′ = ( 1 cos ( x ) ) ′ = ( − 1 cos 2 ( x ) ) ⋅ ( − sin ( x ) ) = sin ( x ) cos 2 ( x ) (\sec(x))'=(\frac{1}{\cos(x)})'=(-\frac{1}{\cos^{2}(x)})\cdot(-\sin(x))=\frac{\sin(x)}{\cos^2(x)} ( sec ( x ) ) ′ = ( c o s ( x ) 1 ) ′ = ( − c o s 2 ( x ) 1 ) ⋅ ( − sin ( x )) = c o s 2 ( x ) s i n ( x ) ,
where f ( x ) = 1 cos ( x ) , g ( x ) = cos ( x ) f(x)=\frac{1}{\cos(x)}, g(x)=\cos(x) f ( x ) = c o s ( x ) 1 , g ( x ) = cos ( x ) ).
-------------------------------------------------------------------------------------------------------------------
1) ( sin ( x ) ⋅ ln ( 5 x ) ) ′ . (\sin(x)\cdot\ln(5x))'. ( sin ( x ) ⋅ ln ( 5 x ) ) ′ .
( f ⋅ g ) ′ = f ′ g + f g ′ (f\cdot g)'=f'g+fg' ( f ⋅ g ) ′ = f ′ g + f g ′ (1)
Use (1),
( sin ( x ) ⋅ ln ( 5 x ) ) ′ = ( sin ( x ) ) ′ ⋅ ln ( 5 x ) + sin ( x ) ⋅ ( ln ( 5 x ) ) ′ = (\sin(x)\cdot\ln(5x))'=(\sin(x))'\cdot\ln(5x)+\sin(x)\cdot(\ln(5x))'= ( sin ( x ) ⋅ ln ( 5 x ) ) ′ = ( sin ( x ) ) ′ ⋅ ln ( 5 x ) + sin ( x ) ⋅ ( ln ( 5 x ) ) ′ =
= cos ( x ) ⋅ ln ( 5 x ) + sin ( x ) ⋅ 1 5 x ⋅ 5 = cos ( x ) ⋅ ln ( 5 x ) + sin ( x ) x =\cos(x)\cdot\ln(5x)+\sin(x)\cdot\frac{1}{5x}\cdot5=\cos(x)\cdot\ln(5x)+\frac{\sin(x)}{x} = cos ( x ) ⋅ ln ( 5 x ) + sin ( x ) ⋅ 5 x 1 ⋅ 5 = cos ( x ) ⋅ ln ( 5 x ) + x s i n ( x ) .
-------------------------------------------------------------------------------------------------------------------
2) ( cos ( x ) ) ′ (\sqrt{\cos(\sqrt{x})})' ( cos ( x ) ) ′ .
Let p ( x ) = f ( g ( h ( x ) ) ) p(x)=f(g(h(x))) p ( x ) = f ( g ( h ( x ))) , then p ′ ( x ) = f ′ ( x ) ⋅ g ′ ( x ) ⋅ h ′ ( x ) p'(x)=f'(x)\cdot g'(x)\cdot h'(x) p ′ ( x ) = f ′ ( x ) ⋅ g ′ ( x ) ⋅ h ′ ( x ) .
f ( x ) = u , u = cos ( x ) ⟹ f ′ ( x ) = 1 2 ⋅ 1 u = 1 2 ⋅ 1 cos ( x ) f(x)=\sqrt{u}, u=\cos(\sqrt{x})\implies f'(x)=\frac{1}{2}\cdot\frac{1}{\sqrt{u}}=\frac{1}{2}\cdot\frac{1}{\sqrt{\cos(\sqrt{x})}} f ( x ) = u , u = cos ( x ) ⟹ f ′ ( x ) = 2 1 ⋅ u 1 = 2 1 ⋅ c o s ( x ) 1 ,
g ( x ) = cos ( v ) , v = x ⟹ g ′ ( x ) = − sin ( v ) = − sin ( x ) g(x)=\cos(v),v=\sqrt{x}\implies g'(x)=-\sin(v)=-\sin(\sqrt{x}) g ( x ) = cos ( v ) , v = x ⟹ g ′ ( x ) = − sin ( v ) = − sin ( x ) ,
h ( x ) = x , h ′ ( x ) = 1 2 ⋅ 1 x h(x)=\sqrt{x}, h'(x)=\frac{1}{2}\cdot\frac{1}{\sqrt{x}} h ( x ) = x , h ′ ( x ) = 2 1 ⋅ x 1 .
( cos ( x ) ) ′ = 1 2 ⋅ 1 cos ( x ) ⋅ ( − sin ( x ) ) ⋅ 1 2 ⋅ 1 x = (\sqrt{\cos(\sqrt{x})})'=\frac{1}{2}\cdot\frac{1}{\sqrt{\cos(\sqrt{x})}}\cdot(-\sin(\sqrt{x}))\cdot\frac{1}{2}\cdot\frac{1}{\sqrt{x}}= ( cos ( x ) ) ′ = 2 1 ⋅ c o s ( x ) 1 ⋅ ( − sin ( x )) ⋅ 2 1 ⋅ x 1 =
= − 1 4 ⋅ sin ( x ) x ⋅ cos ( x ) =-\frac{1}{4}\cdot\frac{\sin(\sqrt{x})}{\sqrt{x}\cdot\sqrt{\cos(\sqrt{x})}} = − 4 1 ⋅ x ⋅ c o s ( x ) s i n ( x ) .
-------------------------------------------------------------------------------------------------------------------
3) ( e ln ( tan ( 5 x ) ) ) ′ (e^{\ln(\tan(5x))})' ( e l n ( t a n ( 5 x )) ) ′ .
Let p ( x ) = s ( f ( g ( h ( x ) ) ) ) ⟹ p ′ ( x ) = s ′ ( x ) ⋅ f ′ ( x ) ⋅ g ′ ( x ) ⋅ h ′ ( x ) p(x)=s(f(g(h(x))))\implies p'(x)=s'(x)\cdot f'(x)\cdot g'(x)\cdot h'(x) p ( x ) = s ( f ( g ( h ( x )))) ⟹ p ′ ( x ) = s ′ ( x ) ⋅ f ′ ( x ) ⋅ g ′ ( x ) ⋅ h ′ ( x ) .
s ( x ) = e u , u = ln ( tan ( 5 ⋅ x ) ) ⟹ s ′ ( x ) = e u = e ln ( tan ( 5 ⋅ x ) ) s(x)=e^{u}, u=\ln(\tan(5\cdot x))\implies s'(x)=e^{u}=e^{\ln(\tan(5\cdot x))} s ( x ) = e u , u = ln ( tan ( 5 ⋅ x )) ⟹ s ′ ( x ) = e u = e l n ( t a n ( 5 ⋅ x )) ,
f ( x ) = ln ( v ) , v = tan ( 5 ⋅ x ) ⟹ f ′ ( x ) = 1 v = 1 tan ( 5 ⋅ x ) f(x)=\ln(v), v=\tan(5\cdot x)\implies f'(x)=\frac{1}{v}=\frac{1}{\tan(5\cdot x)} f ( x ) = ln ( v ) , v = tan ( 5 ⋅ x ) ⟹ f ′ ( x ) = v 1 = t a n ( 5 ⋅ x ) 1 ,
g ( x ) = tan ( w ) , w = 5 ⋅ x ⟹ g ′ ( x ) = 1 cos 2 ( w ) = 1 cos 2 ( 5 ⋅ x ) g(x)=\tan(w), w=5\cdot x\implies g'(x)=\frac{1}{\cos^{2}(w)}=\frac{1}{\cos^2(5\cdot x)} g ( x ) = tan ( w ) , w = 5 ⋅ x ⟹ g ′ ( x ) = c o s 2 ( w ) 1 = c o s 2 ( 5 ⋅ x ) 1 ,
h ( x ) = 5 ⋅ x ⟹ h ′ ( x ) = 5 h(x)=5\cdot x\implies h'(x)=5 h ( x ) = 5 ⋅ x ⟹ h ′ ( x ) = 5 .
( e ln ( tan ( 5 x ) ) ) ′ = e ln ( tan ( 5 x ) ) ⋅ 1 t a n ( 5 x ) ⋅ 1 cos 2 ( 5 x ) ⋅ 5 = (e^{\ln(\tan(5x))})'=e^{\ln(\tan(5x))}\cdot\frac{1}{tan(5x)}\cdot\frac{1}{\cos^{2}(5x)}\cdot5= ( e l n ( t a n ( 5 x )) ) ′ = e l n ( t a n ( 5 x )) ⋅ t an ( 5 x ) 1 ⋅ c o s 2 ( 5 x ) 1 ⋅ 5 =
= 5 ⋅ tan ( 5 x ) ⋅ 1 tan ( 5 x ) ⋅ 1 cos 2 ( 5 x ) = 5 sec 2 ( x ) =5\cdot\tan(5x)\cdot\frac{1}{\tan(5x)}\cdot\frac{1}{\cos^{2}(5x)}=5\sec^{2}(x) = 5 ⋅ tan ( 5 x ) ⋅ t a n ( 5 x ) 1 ⋅ c o s 2 ( 5 x ) 1 = 5 sec 2 ( x ) .
-------------------------------------------------------------------------------------------------------------------
4) ( sin ( 2 ( ln ( sec ( x ) ) ) ) ) ′ (\sin(2(\ln(\sec(x)))))' ( sin ( 2 ( ln ( sec ( x )))) ) ′ .
( sin ( 2 ( ln ( sec ( x ) ) ) ) ) ′ = cos ( 2 ( ln ( sec ( x ) ) ) ) ) ⋅ 2 ⋅ 1 sec ( x ) ⋅ sin ( x ) cos 2 ( x ) = (\sin(2(\ln(\sec(x)))))'=\cos(2(\ln(\sec(x)))))\cdot2\cdot\frac{1}{\sec(x)}\cdot\frac{\sin(x)}{\cos^2(x)}= ( sin ( 2 ( ln ( sec ( x )))) ) ′ = cos ( 2 ( ln ( sec ( x ))))) ⋅ 2 ⋅ s e c ( x ) 1 ⋅ c o s 2 ( x ) s i n ( x ) =
= 2 ⋅ cos ( 2 ( ln ( sec ( x ) ) ) ) ) ⋅ tan ( x ) =2\cdot\cos(2(\ln(\sec(x)))))\cdot\tan(x) = 2 ⋅ cos ( 2 ( ln ( sec ( x ))))) ⋅ tan ( x ) .
-------------------------------------------------------------------------------------------------------------------
5) ( ln ( tan ( x ) ) ) ′ = 1 tan ( x ) ⋅ 1 cos 2 ( x ) = 1 sin ( x ) = csc ( x ) (\ln(\tan(x)))'=\frac{1}{\tan(x)}\cdot\frac{1}{\cos^2(x)}=\frac{1}{\sin(x)}=\csc(x) ( ln ( tan ( x )) ) ′ = t a n ( x ) 1 ⋅ c o s 2 ( x ) 1 = s i n ( x ) 1 = csc ( x ) .
Comments