Question #254289

1. Differentiate of the following functions with respect to x:

i) 𝑆𝑖𝑛𝑥∙ ln(5𝑥)

ii) √𝑐𝑜𝑠√𝑥

iii) 𝑒 ln (𝑡𝑎𝑛5𝑥)

iv) 𝑆𝑖𝑛2 {ln(𝑠𝑒𝑐𝑥)}

v) ln (𝑡𝑎𝑛𝑥) �


1
Expert's answer
2021-10-26T10:39:01-0400

(sin(x))=cos(x)(\sin(x))'=\cos(x)

(cos(x))=sin(x)(\cos(x))'=-\sin(x)

(ln(x))=1x(\ln(x))'=\frac{1}{x}

(x)=121x(\sqrt{x})'=\frac{1}{2}\cdot\frac{1}{\sqrt{x}}

(ex)=ex(e^{x})'=e^{x}

(tan(x))=1cos2(x)(\tan(x))'=\frac{1}{\cos^2(x)}

(Cx)=C(C\cdot x)'=C


Let, h(x)=f(g(x)),h(x)=f(x)g(x)h(x)=f(g(x)), h'(x)=f'(x)\cdot g'(x) (*)

Use(*),

(sec(x))=(1cos(x))=(1cos2(x))(sin(x))=sin(x)cos2(x)(\sec(x))'=(\frac{1}{\cos(x)})'=(-\frac{1}{\cos^{2}(x)})\cdot(-\sin(x))=\frac{\sin(x)}{\cos^2(x)} ,

where f(x)=1cos(x),g(x)=cos(x)f(x)=\frac{1}{\cos(x)}, g(x)=\cos(x) ).

-------------------------------------------------------------------------------------------------------------------

1) (sin(x)ln(5x)).(\sin(x)\cdot\ln(5x))'.

(fg)=fg+fg(f\cdot g)'=f'g+fg' (1)

Use (1),

(sin(x)ln(5x))=(sin(x))ln(5x)+sin(x)(ln(5x))=(\sin(x)\cdot\ln(5x))'=(\sin(x))'\cdot\ln(5x)+\sin(x)\cdot(\ln(5x))'=

=cos(x)ln(5x)+sin(x)15x5=cos(x)ln(5x)+sin(x)x=\cos(x)\cdot\ln(5x)+\sin(x)\cdot\frac{1}{5x}\cdot5=\cos(x)\cdot\ln(5x)+\frac{\sin(x)}{x}.

-------------------------------------------------------------------------------------------------------------------

2) (cos(x))(\sqrt{\cos(\sqrt{x})})'.

Let p(x)=f(g(h(x)))p(x)=f(g(h(x))), then p(x)=f(x)g(x)h(x)p'(x)=f'(x)\cdot g'(x)\cdot h'(x).

f(x)=u,u=cos(x)    f(x)=121u=121cos(x)f(x)=\sqrt{u}, u=\cos(\sqrt{x})\implies f'(x)=\frac{1}{2}\cdot\frac{1}{\sqrt{u}}=\frac{1}{2}\cdot\frac{1}{\sqrt{\cos(\sqrt{x})}},

g(x)=cos(v),v=x    g(x)=sin(v)=sin(x)g(x)=\cos(v),v=\sqrt{x}\implies g'(x)=-\sin(v)=-\sin(\sqrt{x}),

h(x)=x,h(x)=121xh(x)=\sqrt{x}, h'(x)=\frac{1}{2}\cdot\frac{1}{\sqrt{x}}.

(cos(x))=121cos(x)(sin(x))121x=(\sqrt{\cos(\sqrt{x})})'=\frac{1}{2}\cdot\frac{1}{\sqrt{\cos(\sqrt{x})}}\cdot(-\sin(\sqrt{x}))\cdot\frac{1}{2}\cdot\frac{1}{\sqrt{x}}=

=14sin(x)xcos(x)=-\frac{1}{4}\cdot\frac{\sin(\sqrt{x})}{\sqrt{x}\cdot\sqrt{\cos(\sqrt{x})}}.

-------------------------------------------------------------------------------------------------------------------

3) (eln(tan(5x)))(e^{\ln(\tan(5x))})'.

Let p(x)=s(f(g(h(x))))    p(x)=s(x)f(x)g(x)h(x)p(x)=s(f(g(h(x))))\implies p'(x)=s'(x)\cdot f'(x)\cdot g'(x)\cdot h'(x).

s(x)=eu,u=ln(tan(5x))    s(x)=eu=eln(tan(5x))s(x)=e^{u}, u=\ln(\tan(5\cdot x))\implies s'(x)=e^{u}=e^{\ln(\tan(5\cdot x))},

f(x)=ln(v),v=tan(5x)    f(x)=1v=1tan(5x)f(x)=\ln(v), v=\tan(5\cdot x)\implies f'(x)=\frac{1}{v}=\frac{1}{\tan(5\cdot x)},

g(x)=tan(w),w=5x    g(x)=1cos2(w)=1cos2(5x)g(x)=\tan(w), w=5\cdot x\implies g'(x)=\frac{1}{\cos^{2}(w)}=\frac{1}{\cos^2(5\cdot x)},

h(x)=5x    h(x)=5h(x)=5\cdot x\implies h'(x)=5.

(eln(tan(5x)))=eln(tan(5x))1tan(5x)1cos2(5x)5=(e^{\ln(\tan(5x))})'=e^{\ln(\tan(5x))}\cdot\frac{1}{tan(5x)}\cdot\frac{1}{\cos^{2}(5x)}\cdot5=

=5tan(5x)1tan(5x)1cos2(5x)=5sec2(x)=5\cdot\tan(5x)\cdot\frac{1}{\tan(5x)}\cdot\frac{1}{\cos^{2}(5x)}=5\sec^{2}(x).

-------------------------------------------------------------------------------------------------------------------

4) (sin(2(ln(sec(x)))))(\sin(2(\ln(\sec(x)))))'.

(sin(2(ln(sec(x)))))=cos(2(ln(sec(x)))))21sec(x)sin(x)cos2(x)=(\sin(2(\ln(\sec(x)))))'=\cos(2(\ln(\sec(x)))))\cdot2\cdot\frac{1}{\sec(x)}\cdot\frac{\sin(x)}{\cos^2(x)}=

=2cos(2(ln(sec(x)))))tan(x)=2\cdot\cos(2(\ln(\sec(x)))))\cdot\tan(x).

-------------------------------------------------------------------------------------------------------------------

5) (ln(tan(x)))=1tan(x)1cos2(x)=1sin(x)=csc(x)(\ln(\tan(x)))'=\frac{1}{\tan(x)}\cdot\frac{1}{\cos^2(x)}=\frac{1}{\sin(x)}=\csc(x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS