Answer to Question #253999 in Differential Equations for Fah

Question #253999

write the ordinary differential equation (1+sin y)dx = (2ycosy-x(secy-tan y))dy


1
Expert's answer
2021-11-29T05:04:27-0500

(1+sin y)dx = (2ycosy-x(secy+tan y))dy

=> dxdy+xsecy+tany1+siny=2ycosy1+siny\frac{dx}{dy} +x \frac{secy+tany}{1+siny}= \frac{2ycosy}{1+siny}

=> dxdy+x(1+siny)cosy(1+siny)=2ycosy1+siny\frac{dx}{dy} +x \frac{(1+siny)}{cosy(1+siny)}= \frac{2ycosy}{1+siny}

=> dxdy+xsecy=2ycosy1+siny\frac{dx}{dy} +x secy= \frac{2ycosy}{1+siny}

This is a linear differential equation

Integrating factor (I.F.) = e(secy)dy=eln(secy+tany)e^{\int (secy )dy}= e^{ln(secy +tany)}

= secy + tany = 1+sinycosy\frac{1+siny}{cosy}

Multiplying both sides by I.F. we get

1+sinycosy.dxdy+x(secy+tany1+siny.1+sinycosy=2ycosy1+siny.1+sinycosy\frac{1+siny}{cosy}.\frac{dx}{dy} +x \frac{(secy+tany}{1+siny}.\frac{1+siny}{cosy}= \frac{2ycosy}{1+siny}.\frac{1+siny}{cosy}

=> d(x1+sinycosyx\frac{1+siny}{cosy} )= 2ydy

Integrating we get

d(x1+sinycosy)=2ydy+C\int d( x\frac{1+siny}{cosy})= \int2ydy+C

=> x1+sinycosy=y²+Cx\frac{1+siny}{cosy}= y² + C , where CC is integration constant.

This is the solution of the differential equation given.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment