(1+sin y)dx = (2ycosy-x(secy+tan y))dy
=> dydx+x1+sinysecy+tany=1+siny2ycosy
=> dydx+xcosy(1+siny)(1+siny)=1+siny2ycosy
=> dydx+xsecy=1+siny2ycosy
This is a linear differential equation
Integrating factor (I.F.) = e∫(secy)dy=eln(secy+tany)
= secy + tany = cosy1+siny
Multiplying both sides by I.F. we get
cosy1+siny.dydx+x1+siny(secy+tany.cosy1+siny=1+siny2ycosy.cosy1+siny
=> d(xcosy1+siny )= 2ydy
Integrating we get
∫d(xcosy1+siny)=∫2ydy+C
=> xcosy1+siny=y²+C , where C is integration constant.
This is the solution of the differential equation given.
Comments
Leave a comment