(x2−yz)p+(y2−zx)q=z2−xyp=δxδz and q=δyδzThe auxilliary equations are x2−yzdx=y2−zxdy=z2−xydzHence (x2−yz)−(y2−zx)dx−dy=(y2−zx)−(z2−xy)dy−dz=(z2−xy)−(x2−yz)dz−dx(x−y)(x+y+z)d(x−y)=(x−y)(x+y+z)d(y−z)=(z−x)(x+y+z)d(x−y)x−yd(x−y)=y−zd(y−z)=z−xd(z−x)Integrate both sidesln∣x−y∣=ln∣y−z∣+lnC1ln∣y−z∣=ln∣z−x∣+lnC2⟹y−zx−y=C1 z−xy−z=C2The general solution of the equation is ϕ(y−zx−y,z−xy−z)=0
Comments
Leave a comment