Question #242082

(y−1)dx−(x−y−1)dy=0



1
Expert's answer
2021-09-28T01:34:59-0400

(y1)dx(xy1)dy=0M=y1    My=1N=(xy1)    Nx=1Thus MyNx     It is not exactTo get the integrating factor;NxMyM=2y1.I.F=e2y1dy=e2ln(y1)=(y1)2Multiply the DE by I.F(y1)1dxxy1(y1)2dy=0My=Nx=1(y1)2Fx=(y1)1dxF=(y1)1dxF=x(y1)1+Φ(y)Differentiate w.r.t yFy=x(y1)2+Φ(y)xy1(y1)2=x(y1)2+Φ(y)Φ(y)=y+1(y1)2Φ(y)=2y1ln(y1)HenceF=x(y1)1+2y1ln(y1)(y-1)dx-(x-y-1)dy=0\\ M=y-1 \implies M_y=1\\ N=-(x-y-1) \implies N_x=-1\\ \text{Thus } M_y\neq N_x \implies \text{ It is not exact}\\ \text{To get the integrating factor;}\\ \frac{N_x-M_y}{M}=-\frac{2}{y-1}. \\ I.F=e^{\int -\frac{2}{y-1}dy}=e^{-2\ln (y-1)}=(y-1)^{-2}\\ \text{Multiply the DE by I.F}\\ (y-1)^{-1}dx-\frac{x-y-1}{(y-1)^2}dy=0\\ M_y=N_x=-\frac{1}{(y-1)^2}\\ F_x=(y-1)^{-1}dx\\ F=\int(y-1)^{-1}dx\\ F=x(y-1)^{-1}+\Phi(y)\\ \text{Differentiate w.r.t y}\\ F_y=-\frac{x}{(y-1)^2}+\Phi'(y)\\ -\frac{x-y-1}{(y-1)^2}=-\frac{x}{(y-1)^2}+\Phi'(y)\\ \Phi'(y)=-\frac{y+1}{(y-1)^2}\\ \Phi(y)=\frac{2}{y-1}-\ln(y-1)\\ \text{Hence}\\ F=x(y-1)^{-1}+\frac{2}{y-1}-\ln(y-1)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS