(y−1)dx−(x−y−1)dy=0M=y−1⟹My=1N=−(x−y−1)⟹Nx=−1Thus My=Nx⟹ It is not exactTo get the integrating factor;MNx−My=−y−12.I.F=e∫−y−12dy=e−2ln(y−1)=(y−1)−2Multiply the DE by I.F(y−1)−1dx−(y−1)2x−y−1dy=0My=Nx=−(y−1)21Fx=(y−1)−1dxF=∫(y−1)−1dxF=x(y−1)−1+Φ(y)Differentiate w.r.t yFy=−(y−1)2x+Φ′(y)−(y−1)2x−y−1=−(y−1)2x+Φ′(y)Φ′(y)=−(y−1)2y+1Φ(y)=y−12−ln(y−1)HenceF=x(y−1)−1+y−12−ln(y−1)
Comments