Question #241134
dy / (3x ^ 2) = (1 + y ^ 2) ^ 1.5 * d * x
1
Expert's answer
2021-09-27T04:08:26-0400

dy3x2=(1+y2)32dxdy(1+y2)32=3x2.dx\frac{dy}{3x^2}=(1+y^2)^{\frac{3}{2}}dx\\ \Rightarrow \frac{dy}{(1+y^2)^{\frac{3}{2}}}=3x^2.dx

Integrate both sides:

dy(1+y2)32=3x2.dx\intop \frac{dy}{(1+y^2)^{\frac{3}{2}}}=\intop3x^2.dx

Put y=tanθy=tan \theta \\

dy=sec2θ.dθ\therefore dy=sec^2 \theta.d\theta

sec2θ(1+tan2θ)32dθ=x3+c\intop \frac{sec^2\theta }{(1+tan^2 \theta )^{\frac{3}{2}}} d\theta =x^3+c

sec2θsec3θdθ=x3+ccosθdθ=x3+csinθ=x3+cyy2+1=x3+c\Rightarrow \intop \frac{sec^2\theta}{sec^3\theta} d\theta =x^3+c\\ \Rightarrow \intop cos\theta d\theta=x^3+c\\ \Rightarrow sin\theta=x^3+c\\ \Rightarrow \frac{y}{\sqrt{y^2+1}}=x^3+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS