dy3x2=(1+y2)32dx⇒dy(1+y2)32=3x2.dx\frac{dy}{3x^2}=(1+y^2)^{\frac{3}{2}}dx\\ \Rightarrow \frac{dy}{(1+y^2)^{\frac{3}{2}}}=3x^2.dx3x2dy=(1+y2)23dx⇒(1+y2)23dy=3x2.dx
Integrate both sides:
∫dy(1+y2)32=∫3x2.dx\intop \frac{dy}{(1+y^2)^{\frac{3}{2}}}=\intop3x^2.dx∫(1+y2)23dy=∫3x2.dx
Put y=tanθy=tan \theta \\y=tanθ
∴dy=sec2θ.dθ\therefore dy=sec^2 \theta.d\theta∴dy=sec2θ.dθ
∫sec2θ(1+tan2θ)32dθ=x3+c\intop \frac{sec^2\theta }{(1+tan^2 \theta )^{\frac{3}{2}}} d\theta =x^3+c∫(1+tan2θ)23sec2θdθ=x3+c
⇒∫sec2θsec3θdθ=x3+c⇒∫cosθdθ=x3+c⇒sinθ=x3+c⇒yy2+1=x3+c\Rightarrow \intop \frac{sec^2\theta}{sec^3\theta} d\theta =x^3+c\\ \Rightarrow \intop cos\theta d\theta=x^3+c\\ \Rightarrow sin\theta=x^3+c\\ \Rightarrow \frac{y}{\sqrt{y^2+1}}=x^3+c⇒∫sec3θsec2θdθ=x3+c⇒∫cosθdθ=x3+c⇒sinθ=x3+c⇒y2+1y=x3+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments