Question #241160
(y ^ 2 * sin x) * d * x + (1 / x - y / x) * d * y = 0
1
Expert's answer
2021-09-28T15:51:28-0400

y2sinxdx+1yxdy=01yy2dy=xsinxdxIntegrate both sides1y21ydy=xsinxdx1ylny=[xcosxcosxdx]1ylny=xcosxsinx+Ce1y+lny=e[xcosxsinx+C]ye1y=e[xcosxsinx+C]y^2\sin xdx+\frac{1-y}{x}dy=0\\ \frac{1-y}{y^2}dy=-x\sin xdx\\ \text{Integrate both sides}\\ \int \frac{1}{y^2}-\frac{1}{y}dy=-\int x\sin x dx\\ -\frac{1}{y}-\ln y=-[-x\cos x-\int -\cos x dx]\\ -\frac{1}{y}-\ln y=x\cos x-\sin x +C\\ e^{\frac{1}{y}+\ln y}=e^{-[x\cos x-\sin x +C]}\\ ye^{\frac{1}{y}}=e^{-[x\cos x-\sin x +C]}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS