y2sinxdx+1−yxdy=01−yy2dy=−xsinxdxIntegrate both sides∫1y2−1ydy=−∫xsinxdx−1y−lny=−[−xcosx−∫−cosxdx]−1y−lny=xcosx−sinx+Ce1y+lny=e−[xcosx−sinx+C]ye1y=e−[xcosx−sinx+C]y^2\sin xdx+\frac{1-y}{x}dy=0\\ \frac{1-y}{y^2}dy=-x\sin xdx\\ \text{Integrate both sides}\\ \int \frac{1}{y^2}-\frac{1}{y}dy=-\int x\sin x dx\\ -\frac{1}{y}-\ln y=-[-x\cos x-\int -\cos x dx]\\ -\frac{1}{y}-\ln y=x\cos x-\sin x +C\\ e^{\frac{1}{y}+\ln y}=e^{-[x\cos x-\sin x +C]}\\ ye^{\frac{1}{y}}=e^{-[x\cos x-\sin x +C]}y2sinxdx+x1−ydy=0y21−ydy=−xsinxdxIntegrate both sides∫y21−y1dy=−∫xsinxdx−y1−lny=−[−xcosx−∫−cosxdx]−y1−lny=xcosx−sinx+Cey1+lny=e−[xcosx−sinx+C]yey1=e−[xcosx−sinx+C]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments